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CHAPTER 1

Image Classification with Keras

A Note for Early Release Readers

This will be the second chapter of the final book.

Now that we have started our journey into deep learning, let’s get our hands a little
dirty.

If you have skimmed through deep learning literature, you may have come across a
barrage of confusing academic explanations laced with scary mathematics. Don’t
worry. We will ease you into practical deep learning by showing how easily you can
classify images with just a few lines of code.

In this chapter, we will introduce Keras, discuss its place in the deep learning land‐
scape, and then use it to classify a few images using existing state-of-the-art classifi‐
ers. We will visually investigate how these classifiers operate by using heatmaps. With
these heatmaps, we’ll make a fun project where we classify objects in videos.

Where’s the theory behind this, you might wonder? That will come later. Using this
chapter as a foundation, we will delve deeper into the nuts and bolts of convolutional
neural networks in the chapters that follow. After all, there’s no better way to learn
about and appreciate the components of a system than to dive right in and use them!

Introduction to Keras
Keras is a high-level neural network API designed to provide a simplified abstraction
layer above several deep learning libraries such as TensorFlow, Theano, CNTK,
PlaidML, MXNet, and more. This abstraction makes it easier and quicker to code
deep neural networks with Keras than using the libraries themselves. While beginner-
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friendly, Keras has enough functionality for quick prototyping and even professional-
level, heavy-duty training. In this book, we will primarily use Keras with a
TensorFlow backend.

Layers of Abstraction
One can draw parallels between the layers of abstraction in deep learning and those
in computer programming. Much like how a computer programmer could write code
in machine language (theoretically albeit painfully), assembly language, or higher-
level languages, a deep learning practitioner can write training and inference pro‐
grams using low-level frameworks such as CUDA, libraries like TensorFlow, or high-
level frameworks such as Keras. In both cases, greater abstraction means greater ease
of use, at the expense of flexibility.

Here are the building blocks for most deep learning libraries running on NVIDIA
GPUs. The higher the level, the higher the abstraction.

Figure 1-1. Levels of abstraction for different libraries. Abstraction increases in the direc‐
tion of the arrows.

Since NVIDIA is the leading provider of GPUs used for deep learning, it provides
drivers, CUDA, and cuDNN. Drivers help the operating system interface with the
hardware GPU. CUDA, which stands for Compute Unified Device Architecture, pro‐
vides direct access to the virtual instruction set of the GPU and the ability to execute
parallel compute kernels. The CUDA Deep Neural Network library or cuDNN, which
is built on top of CUDA, provides highly tuned implementations for standard rou‐
tines and primitives for deep neural networks, such as convolution, pooling, normal‐
ization, and activation layers. Deep learning libraries like TensorFlow reuse these
primitives and provide the inference engine (i.e. the system to compute predictions
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from the data). Finally, Keras provides another level of abstraction to further compact
the necessary code to make this model.

Higher-level abstractions provide a form of leverage: you can do more with fewer
lines of code. Let’s test this theory out by comparing Keras with TensorFlow on one of
the most famous tasks in deep learning: training a handwritten digit classifier (on the
MNIST dataset) using a convolutional neural network. Using publicly available code
in tutorials, we stripped off everything except for the core code and found that Keras
requires roughly half the keystrokes when compared to TensorFlow code for the same
task, as shown in Table 1-1.

Table 1-1. Example showing lines of code and character count at two abstraction levels.
Higher levels of abstraction permit the same work to be accomplished with fewer lines and

characters.

Library Line count Character count (no spaces) Avg. character count per line

TensorFlow 31 2162 70

Keras 22 1018 46

In addition to being easier to use, Keras is quite popular within the open-source com‐
munity. A good measure of an open-source project’s popularity is the number of peo‐
ple who contribute to its codebase. As of March 2018, the following is a comparison
of Keras to other libraries on GitHub:

Table 1-2. Stars and contributions to each framework’s GitHub repo. It’s worth remembering
that many contributors to TensorFlow are Googlers, while Keras is a lot more “grassroots,”

with a diverse contributor base.

Library Stars Contributors

tensorflow/tensorflow 92150 1357

fchollet/keras 26744 638

BVLC/caffe 23159 264

Microsoft/CNTK 13995 173

dmlc/mxnet 13318 492

pytorch/pytorch 12835 414

deeplearning4j/deeplearning4j 8472 140

caffe2/caffe2 7540 176

Since its inception in 2015, Keras has consistently attracted more users, quickly
becoming the framework of choice for deep learning after TensorFlow. Due a large
user base and the open-source development community behind it, you can readily
find many examples of tasks on Github and other documentation sources, making it
easy for beginners to learn Keras. It is also versatile, allowing various deep learning
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backends to be used for training (like TensorFlow, CNTK, Theano, etc.) so it does not
lock you into a specific ecosystem. Keras is therefore quite ideal for anyone who is
making their foray into deep learning.

Keras in Practice
Predicting an Image’s Category
As we covered in Chapter 1, image classification answers the question “does the
image contain X?” where X can be virtually any category or class of objects. The pro‐
cess can be broken down into the following steps:

1. Load an image
2. Resize it to 224×224 size
3. Normalize the values of the pixel to the range [−1,1] a.k.a preprocessing
4. Select a pre-trained model

Here’s some sample code for predicting categories of an image, which uses some of
the helpful functions that Keras provides in its modules. As you do more coding,
you’ll often find that the layer or pre-processing step you need is already imple‐
mented in Keras, so remember to read the documentation.

In the GitHub repo, navigate to code/chapter2. All the steps we will be following are
also detailed in the Jupyter notebook ‘1_predict_class.ipynb’.

We start by importing all the necessary modules from the Keras and Python pack‐
ages.

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model
from keras.layers import Input, Flatten, Dense, Dropout, GlobalAveragePooling2D
from keras.applications.resnet50 import ResNet50
import keras
from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt

Next, we load and display the image that we want to classify.

img_path = '../../sample_images/cat.jpg'
img = image.load_img(img_path, target_size=(224, 224))
plt.imshow(img)
plt.show()
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Figure 1-2. Plot showing the contents of the file cat.jpg.

It’s a cat! And that’s what our model should ideally be predicting.

A Brief Refresher on Images
Before we dive into how images are processed, it would be good to
take a look at how images store information. At the most basic
level, an image is a collection of pixels that are laid out in a rectan‐
gular grid. Depending on the type of image, each pixel can consist
of 1 to 4 parts (also known as components or channels). With
image we will be using, these components represent the intensities
of Red, Green and Blue colors (RGB). They are typically 8 bits in
length, so their values range between 0 and 255 (i.e. 28 -1).

In machine learning, it is empirically shown that taking an input within an arbitrary
range and scaling it to the interval [0,1] or [−1,1] improves its chances of learning.
This step is commonly referred to as normalization. Normalizing is one of the core
steps in preprocessing images to make them suitable for deep learning.

We want to replicate the same preprocessing steps as the ones undergone during the
original training of the pretrained models. Luckily, Keras provides a handy function,
“preprocess_input” that does this for us. Before feeding any image to Keras, we
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want to convert it to a standard format. This standardization involves resizing the
image to 224×224 pixels to ensure that the image size is uniform. Since the model has
been trained to accept a batch of multiple images rather than one image at a time.
Since we only have one image, we create a batch of one image to feed to our model.
We can achieve that by adding an extra dimension (which represents the position of
the image within that batch) at the start of our image matrix, as shown in the code
below:

img_array = image.img_to_array(img)
img_batch = np.expand_dims(img_array, axis=0)

We then send the batch to the Keras preprocessing function.

The model we will use is ‘ResNet-50’, which belongs to the family of models that won
the ImageNet 2015 competition in classification, detection and localization tasks. It
also won the MS COCO 2015 competition in detection and segmentation tasks.

First we need to load the model. Instead of hunting for model architecture and pre‐
trained weights on the internet, Keras provides access to them in a single function
call. When you run them for the first time, they will be downloaded from a remote
server.

The resulting preprocessed image is input to the model variable, which gives us prob‐
ability predictions for each class. Keras also provides the “decode_predictions”
function, which tells us the probability of the image belonging to a variety of relevant
category names.

model = ResNet50()
img_array = image.img_to_array(img)
img_batch = np.expand_dims(img_array, axis=0)
img_preprocessed = preprocess_input(img_batch)
prediction = model.predict(img_preprocessed)
decode_predictions(prediction, top=3)[0]
[('n02123045', 'tabby', 0.50009364),
 ('n02124075', 'Egyptian_cat', 0.21690978),
 ('n02123159', 'tiger_cat', 0.2061722)]

The predicted categories for this image are various felines. Why doesn’t it simply pre‐
dict the word ‘cat’ instead? The short answer is that the ResNet-50 model was trained
on a granular dataset with many categories and does not include the more general
‘cat’. We will soon investigate this dataset in more detail, but first let’s load another
sample image.

img_path = '../../sample_images/dog.jpg'
img = image.load_img(img_path, target_size=(224, 224))
plt.imshow(img)
plt.show()
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Figure 1-3. Plot showing the contents of the file dog.jpg.

And again we load our modules:

model = ResNet50()
img_array = image.img_to_array(img)
img_batch = np.expand_dims(img_array, axis=0)
img_preprocessed = preprocess_input(img_batch)
prediction = model.predict(img_preprocessed)
decode_predictions(prediction, top=3)[0]
[('n02113186', 'Cardigan', 0.71606547),
 ('n02113023', 'Pembroke', 0.26909366),
 ('n02110806', 'basenji', 0.0051731034)]

As expected, we get different breeds of the canine family (and not just the ‘dog’ cate‐
gory).
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When using a pre-trained model, it is important to know the pre‐
processing steps involved in the training of the model. The same
preprocessing steps need to be applied for images that are used for
predictions. As an example, for a model previously trained in
Caffe, preprocessing involves converting images from RGB to BGR
and then zero-centering each color channel with respect to the
ImageNet dataset without scaling (i.e., subtracting the mean value
of each color channel in the ImageNet dataset).

ImageNet
So, let’s investigate the ImageNet dataset on which ResNet was trained. ImageNet
(http://www.image-net.org/), as the name suggests, is a network of images: an image
database. It is organized in a hierarchical manner (like the WordNet hierarchy) such
that the parent node encompasses a collection of images of all different varieties pos‐
sible within that parent. For example, within the “animal” parent node, there are fish,
birds, mammals, invertebrates, and so on. Each category has multiple subcategories,
and these have sub-subcategories, and so on, with each only containing images that
match the associated name.

Figure 1-4. Screenshot of the categories and subcategories in the ImageNet Dataset. The
category “American water spaniel” is 8 levels from the root. The dog category contains

189 total sub-categories in 5 hierarchical levels.

Visually, we developed the tree diagram in Figure 1-5 to understand the wide variety
of high-level entities that the ImageNet dataset contains.
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Figure 1-5. Tree map of ImageNet and its classes. This tree map shows the relative per‐
centage of different categories that make up the ImageNet dataset.

The ImageNet dataset was the basis for the famous ImageNet Large Scale Visual Rec‐
ognition Challenge (ILSVRC) which started in 2010 to benchmark progress in com‐
puter vision and challenge researchers to innovate on tasks including object
classification. This dataset and challenge are considered to be the single biggest rea‐
son for drastic improvements in computer vision tasks, taking us from a nearly 30%
error rate to ~2.5%, about as well as humans.

One of the key reasons for the fast pace of improvement was that researchers were
openly sharing models trained on datasets like ImageNet and others. In the next sec‐
tion, we will learn about model reuse in more detail.

Analysis
A Model Zoo in Keras
A model zoo is a place where organizations or individuals place open-source models
so others can use them. These models can be trained using a particular framework
(e.g. Caffe, Tensorflow, etc), for a particular task (e.g. classification, detection, etc.), or
trained on a particular dataset (e.g. ImageNet, Street View House Numbers dataset,
etc). Any model zoo is a collection of different models trained on a set of similar con‐
straints.

The tradition of model zoos started with Caffe, one of the first deep learning frame‐
works, developed at the University of California, Berkeley. Training a deep learning
model from scratch on a multi-million-image database requires weeks of training
time and lots of GPU computational energy, making it a difficult task. The research
community recognized this as a bottleneck, and the organizations that participated in
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the ImageNet competition open-sourced their trained models on Caffe’s website.
Other frameworks soon followed suit.

If you are starting out on a new task, remember to first check if there is already an
existing model that could be of assistance.

The Model Zoo in Keras is a collection of various architectures trained using the
Keras framework on the ImageNet dataset. We tabulate their details in Table 1-3.

Table 1-3. Details of ImageNet trained models

Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth

Inception-ResNet-V2 215 MB 0.804 0.953 55,873,736 572

Xception 88 MB 0.79 0.945 22,910,480 126

Inception-v3 92 MB 0.788 0.944 23,851,784 159

DenseNet-201 80 MB 0.77 0.933 20,242,984 201

ResNet-50 99 MB 0.759 0.929 25,636,712 168

DenseNet-169 57 MB 0.759 0.928 14,307,880 169

DenseNet-121 33 MB 0.745 0.918 8,062,504 121

VGG-19 549 MB 0.727 0.91 143,667,240 26

VGG-16 528 MB 0.715 0.901 138,357,544 23

MobileNet 17 MB 0.665 0.871 4,253,864 88

The column ‘Top-1 Accuracy’ indicates how many times the best guess was the cor‐
rect answer, and the column ‘Top-5 Accuracy’ indicates how many times at least one
out of five guesses was correct. The ‘Depth’ of the network indicates how many layers
are present in the network. The ‘Parameters’ column indicates the size of the model:
the more parameters, the “heavier” the model is, and the slower it is to make predic‐
tions. In this book, you will often see us use ResNet-50 (the most common architec‐
ture cited in research papers for high accuracy) and MobileNet (for good balance
between speed, size, and accuracy).

What Does My Neural Network Think?
Now we will perform a fun experiment to try to understand why the neural network
made a particular prediction. What part of an image made the neural network decide
that it contained, for example, a cat or a dog? It would be helpful to be able to visual‐
ize the decision-making going on within the network, which we can do with a heat‐
map. This tool uses color to help visually identify the areas within an image that
prompted a decision. “Hot” spots, represented by warmer colors (red, orange, and
yellow) highlight the areas with the maximum signal, where a signal indicates the
magnitude of contribution of an area in the image towards the category being predic‐
ted.
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In the GitHub repo, navigate to code/chapter2. We will find a handy Jupyter notebook
‘2_what_does_my_neural_network_think.ipynb’ which describes the following steps.

First, we will need to install the necessary libraries:

(practicaldl) $ pip3 install keras-vis --user
(practicaldl) $ pip3 install Pillow --user
(practicaldl) $ pip3 install matplotlib --user

We then run the visualization script on a single image to generate the heatmap for it:

(practicaldl) $ python3 visualization.py --process image --path ../sample_images/dog.jpg

You should see a newly created file called dog_output.jpg that shows a side-by-side
view of the original image and its heatmap. As you can see from Figure 1-6, the right
half of the image indicates the “areas of heat” along with the correct prediction of a
‘Cardigan (Welsh Corgi)’.

Figure 1-6. Original image of a dog and its generated heatmap.

Next, we want to visualize the heatmap for frames in a video. For that, we need
ffmpeg, an open source multimedia framework. You can find the download binary as
well as the installation instructions for your operating system at www.ffmpeg.org.

We will use ffmpeg to split up a video into individual frames and then run our visual‐
ization script on each of those frames. We must first create a directory to store these
frames and use its name into the ffmpeg command.

(practicaldl) $ mkdir kitchen
(practicaldl) $ ffmpeg -i video/kitchen_input.mov -vf fps=25 kitchen/thumb%04d.jpg -hide_banner

We then run the visualization script with the path of the directory containing the
frames from the previous step:

(practicaldl) $ python3 visualization.py --process video --path kitchen/

You should see a newly created kitchen_output directory that contains all the heat‐
maps for the frames from the input directory.

Finally, compile a video from those frames using ffmpeg:
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(practicaldl) $ ffmpeg -framerate 25 -i kitchen_output/result_%04d.jpg kitchen_output.mp4

Perfect! Imagine generating heatmaps to analyze the strong points and shortfalls of
your trained model or a pretrained model. Don’t forget to post your videos on Twitter
with the hashtag #PracticalDL!

Summary
In this chapter, we got a glimpse of the deep learning universe using Keras. It’s an
easy-to-use yet powerful framework that we’ll use in the next several chapters. We
observed that there is often no need to collect millions of images and use powerful
GPUs to train a custom model, because we can use a pretrained model to predict the
category of an image. By diving deeper into datasets like ImageNet, we learned the
kinds of categories these pretrained models can predict. We also learned about find‐
ing these models in model zoos that exist for most frameworks.

In the next chapter, we will explore how we can tweak an existing pretrained model to
make predictions on classes of input for which it was not originally intended. As with
the current chapter, our approach is geared toward obtaining output without needing
millions of images and lots of hardware resources to train a classifier.
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CHAPTER 2

Cats vs Dogs - Transfer Learning in 30 lines
with Keras

A Note for Early Release Readers

This will be the third chapter of the final book.

Imagine you want to learn how to play the ukulele. If you have no musical back‐
ground, and you are starting fresh with the ukulele as your very first instrument, it’ll
take you a few months to get proficient at playing it. On the other hand, if you are
accustomed to playing the guitar, it might just take a week, due to how similar the
two instruments are. Taking the learnings from one task and fine-tuning them on a
similar task is something we often do in real life. The more similar the two tasks are,
the easier it is to adapt the learnings from one task to the other.

This phenomenon from real life can also be applied to the world of deep learning. It
is relatively quick to start with a pretrained model, reuse the knowledge that it
learned during its training, and adapt it to the task at hand. This process is known as
Transfer Learning.

In this chapter, we will use transfer learning to modify existing models by training
our own classifier in minutes with Keras. Otherwise, training from scratch would
have taken anywhere from days to weeks. By the end, you will have several tools in
your arsenal to create high-quality image classifiers on any topic.
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Transfer Learning
Before we discuss the process of transfer learning, let’s quickly take a step back and
review the primary reasons for the boom in deep learning:

1. Availability of bigger and better quality datasets like ImageNet.
2. Better compute available i.e. faster and cheaper GPU.
3. Better algorithms (model architecture, optimizer, and training procedure).
4. Availability of pretrained models that have taken months to train but can be

quickly reused.

The last point is probably one of the biggest reasons for widespread adoption of deep
learning into the masses. If every training task still took a month, not more than a
handful of researchers with deep pockets would be working in this area. Thanks to
transfer learning, the underappreciated hero of training models, you can now modify
an existing model to suit your task in as little as a few minutes.

For example, the pretrained ResNet-50 model which is trained on ImageNet can pre‐
dict feline and canine breeds, among thousands of other categories. So, if we just want
to classify between the high level ‘cat’ and ‘dog’ categories (and not the lower level
breeds), we can start with the ResNet-50 model and quickly retrain this model to
classify ‘cats’ and ‘dogs’. All we have to do is to show it a dataset with these two cate‐
gories during training, which should take anywhere between a few minutes to hours.
In comparison, if you had to train a cat vs dog model without a pre-trained model,
this might take several days.

Solving the world’s most pressing computer vision problem
It’s early 2014 and Microsoft Research (MSR) is figuring out how to
solve the world’s most pressing problem - “Differentiating cats and
dogs”! Yes, you heard it right. To facilitate this research, MSR
released the Asirra (Animal Species Image Recognition for
Restricting Access) dataset. The big picture behind the Asirra data‐
set is to develop a hard enough CAPTCHA system. Over 3 million
images, labeled by animal shelters throughout the United States
were provided by Petfinder.com to Microsoft Research. When this
problem was initially introduced, the highest possible accuracy
attained was around 80%. And by using deep learning, in just a few
weeks, it went to 98%! This (now relatively easy) task shows the
power of deep learning and the many things it can achieve.
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Understanding Different Layers in a CNN in the Context of Transfer
Learning
Imagine you wanted to detect a human face. You might want to use a convolutional
neural network (CNN) to classify an image and detect whether it contains a face.
Such a CNN would be composed of several sequential layers. The image is fed to this
network and the resulting output is a list of object classes and their probabilities (cat‐
egories like a ball - 90%, dog - 56%, etc.). If the output for an image contains a ‘face’
class with 70% probability, we conclude that there is a 70% likelihood that the image
contains a human face.

The layers in CNN represent mathematical operations. Each layer can take in an
input and gives an output. The output of one layer becomes the input to the subse‐
quent layer. The complexity and power of what a layer can recognize increases as we
go closer to the final layers. Conversely, the reusability of a layer decreases as we go
closer to the output.

Lower level layers (Figure 2-1) (layers that are closer to the input image) get “activa‐
ted” for simpler shapes e.g. edges and curves. They are reusable in many classification
tasks. Middle-level layers (Figure 2-1) get activated for more complex shapes e.g. eyes,
nose, lips. These layers are not nearly as reusable as the lower level layers. And higher
level layers (Figure 2-1) get activated for even more complex shapes e.g. most of the
human face. These layers tend to be more task-specific and thus the least reusable
across other image classification problems.

Convolutional Neural Networks are composed of convolutional fil‐
ters. As the name implies - they act as a sieve of information, only
letting something they can recognize “pass through”. We say that
they got “activated” for that information. For irrelevant informa‐
tion, their output is close to zero. CNNs are the bouncers of the
deep learning world!
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Figure 2-1. (a) Lower level activations, followed by (b) mid level activations and (c)
upper layer activations. Source: Convolutional Deep Belief Networks for Scalable Unsu‐
pervised Learning of Hierarchical Representations, Lee et al, ICML 2009 (http://ai.stan

ford.edu/~ang/papers/icml09-ConvolutionalDeepBeliefNetworks.pdf)

If you want to transfer knowledge from one model to another, you want to reuse
more of the “general” layers, and fewer of the “specific” layers. In other words, you
want to remove the last few layers so that you can utilize the more generic ones, and
add layers that are geared towards your specific classification task. This is how trans‐
fer learning is achieved.

While transfer learning is the concept, fine-tuning is the implementation process.
Fine-tuning, as the name suggests, typically involves tweaking the weights of the last
few of layers in the model. You will often hear data scientists saying, “I fine-tuned the
model.” which means they took a pretrained model, froze the lower layers, trained the
upper part of the network on the new dataset they had (thereby modifying the
weights of these upper layers).

How many layers of a CNN should we fine-tune? This can be guided by the following
two factors:

1. How much data do we have?
If you have a couple hundred labeled images, it would be hard to train and test a
network from scratch. Hence, you should fine-tune the last few layers. But, if you
had a million labeled images, it would be feasible to fine-tune all layers of the net‐
work, and if necessary, train from scratch (i.e build the model architecture with
random weights). So, the amount of task-specific data dictates whether or not,
and how much you can fine-tune.

2. How similar is the data?
If the task-specific data is similar to the data used for the pretrained network,
then you can fine-tune the last few layers. But if your task is identifying different
bones in an X-ray image, and you want to start out from an ImageNet trained
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network, the high dissimilarity between regular ImageNet and X-ray images
would essentially require all layers to be trained.

To summarize here is an easy to follow cheat sheet:

Table 2-1. When and how to fine-tune

High similarity amongst
datasets

Low similarity amongst datasets

Large amount of training
data

Fine-tune all layers Train from scratch, or fine-tune all layers

Small amount of training
data

Fine-tune last few layers Tough luck! Train on a smaller network with heavy data
augmentation

Often when you attempt to train a neural network on a small
amount of data, the result is a model that performs extremely well
on the training data itself, but makes rather poor predictions on
unseen data. Such a model would be described as an “overfitted”
model and the problem itself is known as “overfitting”.
Overfitting is common when you have little training data. To avoid
this problem, fine-tune only the last couple of layers.

In chapter 4 we will discuss fine-tuning in more detail.

Building a Custom Classifier in Keras with Transfer
Learning
As promised, it’s time to build our state of the art classifier in 30 lines or fewer. At a
high level, we will follow the steps shown below:

1. Organize the data: Download labeled images of cats and dogs. Then divide the
images into training and validation folders.

2. Set up the configuration: Define a pipeline for reading data, including prepro‐
cessing the images (e.g. resizing) and batching multiple images together.

3. Augment the data: In the absence of a ton of training images, make small
changes (augmentation) like rotation, zooming, etc to increase variation in train‐
ing data.

4. Define the model: Take a pre-trained model, remove the last few layers, and
append a new classifier layer. Freeze the weights of original layers (i.e. make them
unmodifiable). Select an optimizer algorithm and a metric to track (like accu‐
racy).
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5. Train and test: Start training for a few iterations. Save the model to eventually
load inside any application for predictions.

Let’s explore this process in detail.

Organize the data
Before training, we need to store our dataset in the right folder structure. We’ll divide
the images into two sets – training and validation. Classification accuracy on previ‐
ously unseen images (in the validation folder) is a good proxy for how the classifier
would perform in the real world. Ideally, the more training images, the better the
learning will be. And the more validation images, the better our classifier would per‐
form in the real-world.

For an image file, Keras will automatically assign the name of the class (category)
based on its parent folder name. Here’s the ideal structure to recreate:

Figure 2-2. Example directory structure of the training and validation data for different
classes.
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In Linux/Mac, the following lines of command can help achieve this directory struc‐
ture:

# Preparing the data
# Download from https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/download/train.zip
unzip train.zip
mv train data
cd data
mkdir train val
mkdir train/cat train/dog
mkdir val/cat val/dog

The 25,000 files inside the data folder are prefixed with ‘cat’ and ‘dog’. Now move the
files into their respective directories. To keep our initial experiment short, we’ll pick
250 random files per class and place them in training and validation folders. You can
increase/decrease this number anytime, to experiment with a trade-off between accu‐
racy and speed.

ls | grep cat | sort -R | head −250 | xargs -I {} mv {} train/cat/
ls | grep dog | sort -R | head −250 | xargs -I {} mv {} train/dog/
ls | grep cat | sort -R | head −250 | xargs -I {} mv {} val/cat/
ls | grep dog | sort -R | head −250 | xargs -I {} mv {} val/dog/

Set up the Configuration
To start off with our Python program, we’ll begin with importing the necessary pack‐
ages.

import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model
from keras.layers import Input, Flatten, Dense, Dropout, GlobalAveragePooling2D
from keras.applications.mobilenet import MobileNet
import math

Place all configuration up-front, which you can modify based on your dataset.

TRAIN_DATA_DIR = 'data/train_data/'
VALIDATION_DATA_DIR = 'data/val_data/'
TRAIN_SAMPLES = 500
VALIDATION_SAMPLES = 500
NUM_CLASSES=2
IMG_WIDTH, IMG_HEIGHT = 224, 224
BATCH_SIZE=64

Number of classes
With two classes to distinguish between, we can treat this problem as:

1. A binary classification task, or
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2. A multi-class classification task.

Binary Classification.    As a binary classification task, it’s important to note that ‘cat vs
dog’ is really ‘cat vs non-cat’. A dog would be classified as a ‘non-cat’ much like a desk
or a ball would. For a given image, the model will give a single probability value cor‐
responding to the cat class (and hence the probability of not-cat is 1-p(cat)). If the
probability is higher than 0.5, then we predict it as a cat, otherwise not-cat. To keep
things simple, we assume it’s guaranteed that the test set would only contain images
of either cats or dogs. Since ‘cat vs non-cat’ is a binary classification task, we set the
number of classes to 1 i.e. ‘cat’. Anything that cannot be classified as ‘cat’ will be classi‐
fied as ‘non-cat’.

Keras processes the input data in the alphabetical order of the
folder names. Since ‘cat’ comes before ‘dog’ alphabetically, our 1
class for prediction is ‘cat’. For a multi-class task, we can apply the
same concept and infer each class id based on the folder sort order.

Multi-Classification.    Unfortunately, binary classification would not work where there
is no guarantee that the test data would contain only pictures of either cats or dogs.
As explained before, even a ball or a sofa would be classified as a dog. For a real-
world scenario, treating this as a multi-classification task is far more useful. As a
multi-classification task, we predict separate probability values for each class, and the
highest one is our winner. In the case of cat vs dog, we set the number of classes to 2.
To keep our code reusable for future tasks, we will treat this as a multi-classification
task.

Batch size
At a high-level, the CNN training process includes the following steps:

1. Make predictions on images (forward pass).
2. Determine which predictions were incorrect and propagate back the difference

between the prediction and the true value (backpropagation).
3. Rinse and repeat till the predictions become sufficiently accurate.

It’s quite likely that the initial iteration would have close to 0% accuracy. Repeating
the process several times, however, can yield a highly accurate model (> 90%).

The batch size defines how many images are seen by the CNN at a time. It’s important
that each batch have a good variety of images from different classes in order to pre‐
vent large fluctuations in the accuracy metric between iterations. A sufficiently large
batch size would be necessary for that. However, it’s important not to set the batch
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size too large for a couple of reasons. First, if the batch size is too large, you could end
up crashing the program due to lack of memory. Second, the training process would
be slower. Usually, batch sizes are set as powers of 2. 64 is a good number to start with
for most problems and you can play with the number by increasing/decreasing it.

Data Augmentation
Usually, when you hear deep learning, you associate it with millions of images. But
500 images like what we have might be a low number for real-world training. Now,
these deep neural networks are powerful, a little too powerful for small quantities of
data. The danger of a limited set of training images is that the neural network might
memorize your training data, and show great prediction performance on the training
set, but bad accuracy on the validation set. In other words, the model has overtrained
and does not generalize on previously unseen images. And we don’t want that, right?

There are often cases where there’s not enough data available. Perhaps you’re working
on a niche problem and data is hard to come by. There are a few ways you can artifi‐
cially augment your dataset:

1. Rotation: In our example, we might want to rotate the 500 images randomly by
20 degrees in either direction, yielding up to 20000 possible unique images.

2. Random Shift: Shift the images slightly to the left, or to the right.
3. Zoom: Zoom in and out slightly of the image

By combining rotation, shifting and zooming, the program can generate almost infin‐
ite unique images. This important step is called data augmentation. Keras provides
ImageDataGenerator function that augments the data while it is being loaded from
the directory. Example augmentations generated by the imgaug (https://github.com/
aleju/imgaug) for a sample image are shown in Figure 2-3.
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Figure 2-3. Possible image augmentations generated from a single image by imgaug
library

Colored images usually have 3 channels - red, green, and blue. Each channel has an
intensity value ranging from 0 to 255. To normalize it (i.e. scale down the value to
between 0 and 1), we will divide each pixel by 255.

train_datagen = ImageDataGenerator(rescale=1./255,
                                   rotation_range=20,
                                   width_shift_range=0.2,
                                   height_shift_range=0.2,
                                   zoom_range=0.2)
val_datagen = ImageDataGenerator(rescale=1./255)
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Sometimes knowing the label of a training image can be useful in
determining appropriate ways of augmenting it. For example, when
training a digit recognizer, you might be okay with augmentation
by flipping vertically for an ‘8’ digit image, but not for ‘6’ and ‘9’.

Unlike in the training set, we don’t want to augment our validation dataset. The rea‐
son is that with dynamic augmentation, the validation set would keep changing in
each iteration, and the resulting accuracy metric would be inconsistent and hard to
compare across other iterations.

Time to load the data from its directories. Training one image at a time can be pretty
inefficient, so we can batch them into groups. To introduce more randomness during
the training process, we’ll keep shuffling the images in each batch. To bring reprodu‐
cibility during multiple runs of the same program, we’ll give the random number
generator a seed value.

train_generator = train_datagen.flow_from_directory(
                        TRAIN_DATA_DIR,
                        target_size=(IMG_WIDTH, IMG_HEIGHT),
                        batch_size=BATCH_SIZE,
                        shuffle=True,
                        seed=12345,
                        class_mode='categorical')
validation_generator = val_datagen.flow_from_directory(
                        VALIDATION_DATA_DIR,
                        target_size=(IMG_WIDTH, IMG_HEIGHT),
                        batch_size=BATCH_SIZE,
                        shuffle=False,
                        class_mode='categorical')

Model Definition
Now that the data is taken care of, we come to the most crucial component of our
training process - the model. In the code below, we will reuse a CNN previously
trained on the ImageNet dataset (MobileNet in our case), throw away the last layer
(ImageNet specific classifier/Softmax), and replace it with our own classifier that is
suited to the task at hand. For transfer learning, we’ll “freeze” the weights of the origi‐
nal model, i.e. set those layers as unmodifiable, so only the layers of the new classifier
(that we add) can be modified. We use MobileNet here to keep things fast, but this
method will work just as well for any neural network. Don’t worry about the specific
layers, we’ll dig deeper into those details in chapter 4.

def model_maker():
    base_model = MobileNet(include_top=False, input_shape = (IMG_WIDTH,IMG_HEIGHT,3))
    for layer in base_model.layers[:]:
        layer.trainable = False # Freeze the layers
    input = Input(shape=(IMG_WIDTH, IMG_HEIGHT, 3))
    custom_model = base_model(input)
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    custom_model = GlobalAveragePooling2D()(custom_model)
    custom_model = Dense(64, activation='relu')(custom_model)
    custom_model = Dropout(0.5)(custom_model)
    predictions = Dense(NUM_CLASSES, activation='softmax')(custom_model)
    return Model(inputs=input, outputs=predictions)

Train and Test

Training Parameters
With both the data and model ready, all we have left to do is train the model. This is
also known as fitting the model to the data. For training any model, we need to pick a
loss function, an optimizer, initial learning rate and a metric.

• Loss function: The loss function is the objective being minimized. For example,
in a task to predict house prices, the loss function could be the mean squared
error.

• Optimizer: This is an optimization algorithm that helps minimize the loss func‐
tion. We’ll choose Adam, one of the fastest optimizers out there.

• Learning rate: This defines how quickly or slowly you update the weights during
training. Choosing an optimal learning rate is crucial - a big value can cause the
training process to jump around, missing the target. On the other hand, a tiny
value can cause the training process to take ages to reach the target. We’ll keep it
at 0.001 for now.

• Metric: Choose a metric to judge the performance of the trained model. Accu‐
racy is a good explainable metric, especially when the classes are not imbalanced,
i.e. roughly equal in size. Note that this metric is not used during training to
maximize or minimize an objective.

In the following piece of code, we create the custom model using the model_maker
function we wrote earlier. We use the parameters described here to customize this
model further for our task of cats vs dogs.

model = model_maker()
model.compile(loss='categorical_crossentropy',
              optimizer= keras.optimizers.Adam(lr=0.001),
              metrics=['acc'])
model.fit_generator(train_generator,
                    steps_per_epoch = math.ceil(float(TRAIN_SAMPLES) / BATCH_SIZE),
                    epochs=10,
                    validation_data = validation_generator,
                    validation_steps = math.ceil(float(VALIDATION_SAMPLES) / BATCH_SIZE))
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You might have noticed the term ‘epoch’ here. One epoch means a
full training step where the network has gone over the entire data‐
set. One epoch may consist of several mini-batches.

Start the Engines
Run this program and let the magic begin. If you don’t have a GPU, brew a cup of
coffee while you wait. You’ll notice 4 statistics - loss and accuracy on both the training
and validation data. You are rooting for the val_acc.

> Epoch 1/100 7/7 [====] - 5s - loss: 0.6888 - acc: 0.6756 - val_loss: 0.2786 - val_acc: 0.9018
> Epoch 2/100 7/7 [====] - 5s - loss: 0.2915 - acc: 0.9019 - val_loss: 0.2022 - val_acc: 0.9220
> Epoch 3/100 7/7 [====] - 4s - loss: 0.1851 - acc: 0.9158 - val_loss: 0.1356 - val_acc: 0.9427
> Epoch 4/100 7/7 [====] - 4s - loss: 0.1509 - acc: 0.9341 - val_loss: 0.1451 - val_acc: 0.9404
> Epoch 5/100 7/7 [====] - 4s - loss: 0.1455 - acc: 0.9464 - val_loss: 0.1637 - val_acc: 0.9381
> Epoch 6/100 7/7 [====] - 4s - loss: 0.1366 - acc: 0.9431 - val_loss: 0.2319 - val_acc: 0.9151
> Epoch 7/100 7/7 [====] - 4s - loss: 0.0983 - acc: 0.9606 - val_loss: 0.1420 - val_acc: 0.9495
> Epoch 8/100 7/7 [====] - 4s - loss: 0.0841 - acc: 0.9731 - val_loss: 0.1423 - val_acc: 0.9518
> Epoch 9/100 7/7 [====] - 4s - loss: 0.0714 - acc: 0.9839 - val_loss: 0.1564 - val_acc: 0.9509
> Epoch 10/100 7/7 [====] - 5s - loss: 0.0848 - acc: 0.9677 - val_loss: 0.0882 - val_acc: 0.9702

All it took was 5 seconds in the very first epoch to reach 90% accuracy on the valida‐
tion set, with just 500 training images. Whoa! And by the 10th step, we observe about
97% validation accuracy. That’s the power of transfer learning. Without having the
model previously trained on ImageNet, getting a decent accuracy on this task would
have taken (1) training time anywhere between a couple of hours to a few days (2)
tons of more data to get decent results.

That’s all the code you need to train a state-of-the-art classifier on any problem. Place
your data into folders with the name of the class, and change the corresponding val‐
ues in the configuration variables. In case your task has more than 2 classes, you
should use categorical_crossentropy as the loss function and replace the activa‐
tion function in the last layer with softmax. Table 2-2 below illustrates this.

Table 2-2. Deciding the loss and activation type based on the task

Classification type Class Mode Loss Activation on the last layer

1 or 2 class binary binary_crossentropy sigmoid

Multi-class, single label categorical categorical_crossentropy softmax

Multi-class, multi-label categorical binary_crossentropy sigmoid

Before we forget, save the model you trained.

model.save('model.h5')
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An ‘activation layer’ is a layer that essentially acts as a filter - based
on a condition, it will allow some values to pass and some to be fil‐
tered out. For example,

Test the Model
Now that you have a trained model, you might eventually want to use it later for your
application. We can now load this model anytime and classify an image. load_model,
as the name suggests loads the model.

from keras.models import load_model
model = load_model('model.h5')

Obscure trivia warning - MobileNet happens to use ReLu6 which
has an upper bound with value 6. Standard ReLu, on the other
hand, does not have an upper bound.

Now let’s try loading our original sample images and see what results we get.

img_path = '../../sample_images/dog.jpg'
img = image.load_img(img_path, target_size=(224,224))
img_array = image.img_to_array(img)
expanded_img_array = np.expand_dims(img_array, axis=0)
preprocessed_img = expanded_img_array / 255. # Preprocess the image
prediction = model.predict(preprocessed_img)
print(prediction)
print(validation_generator.class_indices)
[[0.9967706]]
{'dog': 1, 'cat': 0}

Printing the value of the probability, we see that it 0.996. This is the probability of the
given image belonging to the class ‘1’, which is a dog. Since the probability is greater
than 0.5, the image is predicted as a dog.

In Chapter 1, we used preprocess_input while classifying a single
image from an ImageNet pretrained model. In the code above, we
instead just normalized the image data by dividing with 255. This is
because preprocess_input function is built specifically for Image‐
Net data, and unless we use it for retraining on the new data too, it
should not be used again. Remember to use the exact same steps
for reprocessing both the training and test images.

That’s all that you need to train your own classifiers. Throughout this book, you can
expect to reuse this code for training with minimal modifications. You can also reuse
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this code in your own projects. Play with the number of epochs and images, and
observe how it affects the accuracy. Also, play with any other data you can find
online. You have the power!

Analyzing the results
With our trained model, we can analyze how it’s performing over the validation data‐
set. Beyond the simpler accuracy metrics, looking at the actual images of mispredic‐
tions should give an intuition on whether the example was truly hard or if our model
is not sophisticated enough.

There are 3 questions we want to answer for each category (cat, dog):

• Which images are we most confident about being a cat/dog?
• Which images are we least confident about being a cat/dog?
• Which images have incorrect predictions in spite of being highly confident?

Before we get to that, let’s get predictions over the entire validation dataset. First, we
set the pipeline configuration correctly:

#####################
##### VARIABLES #####
#####################

IMG_WIDTH, IMG_HEIGHT = 224, 224
VALIDATION_DATA_DIR = 'data/val_data/'
VALIDATION_BATCH_SIZE = 64

#####################
## DATA GENERATORS ##
#####################

validation_datagen = ImageDataGenerator(
        rescale=1./255)

validation_generator = validation_datagen.flow_from_directory(
        VALIDATION_DATA_DIR,
        target_size=(IMG_WIDTH, IMG_HEIGHT),
        batch_size=VALIDATION_BATCH_SIZE,
        shuffle=False,
        class_mode='categorical')

ground_truth = validation_generator.classes

Then we get the predictions.

predictions = model.predict_generator(validation_generator)
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To make our analysis easier, we make a dictionary storing the image index to the pre‐
diction and ground truth (the expected prediction) for each image.

# prediction_table is a dict with index, prediction, ground truth
prediction_table = {}
for index, val in enumerate(predictions):
    #get argmax index
    index_of_highest_probability = np.argmax(val)
    value_of_highest_probability = val[index_of_highest_probability]
    prediction_table[index] = [value_of_highest_probability, index_of_highest_probability,
    ground_truth[index]]
assert len(predictions) == len(ground_truth) == len(prediction_table)

For the next two code blocks, we provide boilerplate code which we will be reusing
regularly throughout the book.

We’ll make a helper function to find the images with the highest/lowest probability
value for a given category.

# Helper function that finds images that are closest
# Input parameters:
#   prediction_table: dictionary from the image index to the prediction
and ground truth for that image
#   get_highest_probability: boolean flag to indicate if the results
need to be highest (True) or lowest (False) probabilities
#   label: id of category
#   number_of_items: num of results to return
#   only_false_predictions: boolean flag to indicate if results
should only contain incorrect predictions
def get_images_with_sorted_probabilities(prediction_table, get_highest_probability,
 label, number_of_items, only_false_predictions=False):
    sorted_prediction_table = [ (k, prediction_table[k]) for k in
    sorted(prediction_table, key=prediction_table.get, reverse= get_highest_probability)]
    result = []
    for index, key in enumerate(sorted_prediction_table):
        image_index, [probability, predicted_index, gt] = key
        if predicted_index == label:
            if only_false_predictions == True:
                if predicted_index != gt:
                    result.append([image_index, [probability, predicted_index, gt] ])
            else:
                result.append([image_index, [probability, predicted_index, gt] ])
        if len(result) >= number_of_items:
            return result

We’ll also make two functions to display images.

# Helper functions to plot the nearest images given a query image
def plot_images(filenames, distances, message):
    images = []
    for filename in filenames:
        images.append(mpimg.imread(filename))
    plt.figure(figsize=(20,15))
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    columns = 5
    for i, image in enumerate(images):
        ax = plt.subplot(len(images) / columns + 1, columns, i + 1)
        ax.set_title( "\n\n"+  filenames[i].split("/")[-1]+"\n"+"\nProbability: " +
        str(float("{0:.2f}".format(distances[i]))))
        plt.suptitle( message, fontsize=20, fontweight='bold')
        plt.axis('off')
        plt.imshow(image)

def display(sorted_indicies, message):
    similar_image_paths = []
    distances = []
    for name, value in sorted_indicies:
        [probability, predicted_index, gt] = value
        similar_image_paths.append(VALIDATION_DATA_DIR + fnames[name])
        distances.append(probability)
    plot_images(similar_image_paths,distances, message)

Now the fun starts!

Which images are we most confident contain dogs? Let’s find images with the highest
prediction probability (i.e. closest to 1.0) with the predicted class dog (i.e. 1).

# Most confident predictions of 'dog'
indices = get_images_with_sorted_probabilities(prediction_table, True, 1, 10, False)
message = 'Images with the highest probability of containing dogs'
display(indices[:10], message)

Figure 2-4. Images with the highest probability of containing dogs.

Analyzing the results | 33



These images are indeed very dog-like. One of the reasons why the probability is so
high can be attributed to containing multiple dogs, as well as clear, unambiguous
views. Now let’s try to find which images are we least confident of containing dogs?

# Least confident predictions of 'dog'
indices = get_images_with_sorted_probabilities(prediction_table, False, 1, 10, False)
message = 'Images with the lowest probability of containing dogs'
display(indices[:10], message)

Figure 2-5. Images with the lowest probability of containing dogs.

To repeat, these are the images our classifier is most unsure of containing a dog. Most
of these predictions are right at the tipping point (i.e. 0.5 probability) to be the major‐
ity prediction. Keep in mind the probability of being a cat is just slightly smaller,
around 0.49. Compared to the previous set of images, these images are often smaller
and less clear images. And often contain mispredictions - only 2 of the 10 images
were the correctly predicted. One possible way to do better here is training with a
larger set of images.

If you are concerned about these misclassifications, worry not. A simple trick to
improve the classification accuracy is to have a higher threshold for accepting a clas‐
sifier’s results, say 0.75. If the classifier is unsure of an image category, its results are
withheld. In chapter 4, we will look at how to find an optimal threshold.

Talking of mispredictions, they are obviously expected when the classifier has low
confidence (i.e. near 0.5 probability for a 2 class problem). But what we don’t want is
to mispredict when our classifier is really sure of its predictions. Let’s check which
images the classifier is confident contain dogs in spite of them being cats.
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# Incorrect predictions of 'dog'
indices = get_images_with_sorted_probabilities(prediction_table, True, 1, 10, True)
message = 'Images of cats with the highest probability of containing dogs'
display(indices[:10], message)

Figure 2-6. Images of cats with the highest probability of containing dogs.

Hmm… turns out half of these images contain both cats and dogs, and our classifier
is correctly predicting the dog category as they are bigger in size in these images.
Thus it’s not the classifier but the data which is incorrect here. This often happens in
large datasets. The remaining half often contain unclear and relatively smaller objects
(but ideally we want to expect lower confidence for these hard to identify images).

Repeating the same set of question for the cat class, which images are more cat-like?

# Most confident predictions of 'cat'
indices = get_images_with_sorted_probabilities(prediction_table, True, 0, 10, False)
message = 'Images with the highest probability of containing cats'
display(indices[:10], message)
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Figure 2-7. Images with the highest probability of containing cats.

Interestingly, many of these have multiple cats. This affirms our previous hypothesis
that multiple clear, unambiguous views of cats can give higher probabilities. On the
other hand, which images are we most unsure about containing cats?

# Least confident predictions of 'cat'
indices = get_images_with_sorted_probabilities(prediction_table, False, 0, 10, False)
message = 'Images with the lowest probability of containing cats'
display(indices[:10], message)
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Figure 2-8. Images with the lowest probability of containing cats.

Like previously seen, the key object size is small, and some of the images are quite
unclear meaning there is too much contrast in some cases or the object is too bright,
something not in line with most of the training images. For example, the camera flash
in the eighth (dog.6680) and tenth (dog.1625) images makes it hard to recognize. The
sixth image contains a dog in front of a sofa of the same color. Two images contain
cages.

Lastly, which images is our classifier mistakenly sure of containing cats?

# Incorrect predictions of 'cat'
indices = get_images_with_sorted_probabilities(prediction_table, True, 0, 10, True)
message = 'Images of dogs with the highest probability of containing cats'
display(indices[:10], message)
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Figure 2-9. Images of dogs with the highest probability of containing cats.

These mispredictions are what we want to reduce. Some of them are clearly wrong,
while others are understandably confusing images. The sixth image (dog.4334) seems
to be incorrectly labeled as a dog. Seventh and tenth images are difficult to distin‐
guish against the background. The first and tenth lack enough texture within them to
give the classifier enough identification power. And some of the dogs are too small,
like the second and fourth.

Going over the various analyses, we can summarize that mispredictions can be
caused by low illumination, unclear, difficult to distinguish backgrounds, lack of tex‐
ture and smaller occupied area with regard to the image.

Analyzing your predictions is a great way to understand what your model has
learned, what it’s bad at, and highlights opportunities to enhance its predictive power.
Increasing the size of the training examples and more robust augmentation will help
in improving the classification. It’s also important to note that showing your model
real world images (images that look similar to the scenario where your app will be
used) will help improve its accuracy drastically. In Chapter 4, we will make the classi‐
fier more robust.

Summary
In this chapter, we introduced the concept of transfer learning. We reused a pre-
trained model to build our own cats vs dogs classifier in under 30 lines of code and
with barely 500 images, reaching state-of-art accuracy in a few minutes. By writing
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this code, we also debunk the myth that you need millions of images and powerful
GPUs to train your classifier (though they help).

Hopefully with these skills, you might be able to finally answer the age-old question,
“Who let the dogs out?!”

In the next chapter, we will use this learning to understand CNNs in more depth and
take the model accuracy to the next level.
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