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▸Why should you bother with Bayes 

▸Why should you use Stan 

▸ Introduction to modern Bayesian workflow 

▸ Building up a Stan model 

▸ Brief introduction to pooling and magic of multi-level models 

▸ Pricing books using Stan and rstanarm package 

▸ References and guide to getting started

Outline



Why Bayes



▸ Express your beliefs about parameters and the data generating 
process 

▸ Properly account for uncertainty at the individual and group level 

▸ Do not collapse grouping variables (e.g. sales for of multiple products 
over time) and do not fit a separate model to each group 

▸ Small data is fine if you have a strong model 

▸ But what about Big Data?

Benefits of Bayesian Approach



Big Data Need Big Models
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▸ Problem A: A large retailer 
wants to know how many units of 
each product they are going to sell 
tomorrow

Traditional Machine Learning and Causal Models

▸ Problem B: A large retailer 
wants to find a revenue 
maximizing price for all of their 
products

▸ Data: We observe quantity sold of each product of 
time, meta data about the products, and price 
variation 

▸ Question: Which one needs a causal model?



Why Stan



What Is Stan

What What For

C++ Math/Stats Library Mathematical specification of models; 
Automatic calculations of gradients

Imperative Model Specification Language Fast and simple way to specify complex 
models

Algorithm Toolbox Fit with full Bayes, approximate Bayes, 
optimization (HMC NUTS, ADVI, L-BFGS) 

Interfaces (Command Line, R, Python, 
Julia, Matlab, Stata, …) Work in the language of your choice

Interpretation Tools (shinystan) Model critisism, algorithm evaluation



▸ 2,000+ members on the user list 

▸ Over 10,000 manual downloads during the new release 

▸ Stan is used for fitting climate models, clinical drug trials, genomics 
and cancer biology, population dynamics, psycholinguistics, social 
networks, finance and econometrics, professional sports, publishing, 
recommender systems, educational testing, and many more.

Who Is Using Stan



▸ Model is directly expressed in Stan 

▸ When in MCMC mode Stan 
produces produces draws from 
posterior distribution, not point 
estimates (MLE) of the 
parameters 

▸ Fit complex models with millions 
of parameters 

▸ Express and fit hierarchical 
models

Stan vs Traditional Machine Learning



Stan vs Gibbs and Metropolis

▸ 2-d projection of a highly correlated 250-d distribution 

▸ 1M samples from Metropolis and 1M samples from Gibbs 

▸ 1K samples from NUTS



Hamiltonian Simulation



Intro to Bayes
with Modern Bayesian Workflow



Bayesian Workflow

GATHER PRIOR 
KNOWLEDGE

FORMULATE A 
GENERATIVE MODEL SIMULATE FAKE DATA

FIT FAKE DATA AND 
RECOVER 

PARAMETERS
FIT THE MODEL TO 

REAL DATA

EVALUATE AND 
CRITICIZE THE MODEL

ADD STRUCTURE TO 
THE MODEL

GOOD 
ENOUGH?

PREDICT FOR NEW 
DATA / MAKE A 

DECISION

yes



▸ The joint probability of data y and unknown parameter theta:

Bayesian Machinery

p(y, ✓) = p(y|✓) ⇤ p(✓)
p(y, ✓) = p(✓|y) ⇤ p(y)

▸ The conditional probability of theta given y:
Likelihood   Prior

Marginal Likelihood

p(✓|y) = p(y|✓) ⇤ p(✓)
p(y)

=
p(y|✓) ⇤ p(✓)R

p(y, ✓)d✓
=

p(y|✓) ⇤ p(✓)R
p(y|✓) ⇤ p(✓)d✓

/ p(y|✓) ⇤ p(✓)



Bernoulli Model

▸ If we model each occurrence as independent, the 
joint model can be written as:

▸ What happened to the prior, 

Bernoulli Likelihood  

p(✓)

p(y|✓)

p(y, ✓) =
NY

n=1

✓yn ⇤ (1� ✓)1�yn = ✓
PN

n=1 yn ⇤ (1� ✓)
PN

n=1(1�yn)

log(p(y, ✓)) =
NX

n=1

yn ⇤ log(✓) +
NX

n=1

(1� yn) ⇤ log(1� ✓)

▸ On the log scale:

data <- list(N = 5, 
             y = c(0, 1, 1, 0, 1))

# log probability function
lp <- function(theta, data) {
  lp <- 0
  for (i in 1:data$N) {
    lp <- lp + log(theta) * data$y[i] + 
      log(1 - theta) * (1 - data$y[i])
  }
  return(lp)
}



Bernoulli Model
# using dbinom()
lp_dbinom <- function(theta, d) {
  lp <- 0
  for (i in 1:length(theta)) 
    lp[i] <- sum(dbinom(d$y, size = 1, 
                        prob = theta[i], 
                        log = TRUE))
  return(lp)
}

> lp(c(0.6, 0.7), data)
[1] -3.365058 -3.477970

> lp_dbinom(c(0.6, 0.7), data)
[1] -3.365058 -3.477970



Bernoulli Model
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# generate the parameter grid
theta <- seq(0.001, 0.999, 
             length.out = 250)

# log p(theta | y)
posterior <- lp(theta = theta, data)
posterior <- exp(log_prob)

# normalize
posterior <- posterior / sum(posterior)

# sample from the posterior
post_draws <- sample(theta, size = 1e5, 
                    replace = TRUE, 
                    prob = posterior)
post_dens <- density(post_draws)
mle <- sum(data$y) / data$N
> mle
[1] 0.6



Same Model in Stan
data {
  int<lower=1> N;
  int<lower=0, upper=1> y[N];
}
parameters {
  real theta;
}
model {
  for (n in 1:N)
    target += y[n] * log(theta) + 
                     (1 - y[n]) * log(1 - theta);
}

log(p(y, ✓)) =
NX

n=1

yn ⇤ log(✓) +
NX

n=1

(1� yn) ⇤ log(1� ✓)

data {
  int<lower=1> N;  
  int<lower=0, upper=1> y[N];
}
parameters {
  real<lower=0, upper=1> theta;
}
model {
  y ~ bernoulli(theta);
}



Product Pricing
Basic Model and Data Simulation



Anlytical Problem

▸ A large publisher has hundreds of thousands of 
books in the catalog 

▸ Every year, thousands of new books (products) 
are published 

▸ There are also new authors, repeat authors, 
genres, seasonality, and so on 

▸ Publisher wants to maximize revenue but if 
uncertainty is high, maximize quantity sold 

▸ How should we model this? (and what is this)?



Basic Model for Quantity Sold

▸ For a Gaussian model, and one product:

qtyi ⇠ N(Xi�,�
2)

▸ For products that sell thousands of units we 
would fit a log-log model 

▸ For lower volume products that sometimes sell 
zero units, we fit a count model that does not 
force the mean to be equal to the variance

qty = f(price, price2, product age, ...)

µ = exp(↵+ �1 ⇤ product age+ �2 ⇤ price+ ...)

qty ⇠ NegativeBinomial(µ,�)

�2 = µ+ µ2/�
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simd2 <- hir_data_sim(N_prod = 1,
                      global_intercept = 8.5, 
                      theta = 10,
                      qty_process = "negbinom",
                      primary_price_process = "none",
                      …
                      linkinv = exp)



Simulating Data
if (process == "normal") {
  data <- data %>%
    mutate(qty = linkinv(product_intercept + product_beta_time * days + product_beta_price * price + 
                  error_sd * rnorm(sum(n)))) %>% 
    mutate(qty = ifelse(qty <= 0, 0, round(qty)))                                         
} else { # negative binomial
  data <- data %>%
    mutate(mu = linkinv(product_intercept + product_beta_time * day + product_beta_price * price)
           qty = MASS::rnegbin(n = sum(n), mu = mu, theta = theta))
}
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What About the Real Data?



Baseline Stan Model for Single Product
data {
  int<lower=0> N;  
  int<lower=0> y[N];
  vector[N] t;       
}
parameters {
  real alpha;        // overall mean
  real beta;         // time beta
  real<lower=0> phi; // dispersion
}
model {
  vector[N] eta;     
  // linear predictor
  eta = alpha + t * beta; 
  // priors
  alpha ~ normal(0, 10);
  phi ~ cauchy(0, 2.5);
  beta ~ normal(0, 1);
  // likelihood
  y ~ neg_binomial_2_log(eta, phi);
}

simd2_m2 <- stan('m2_self_stan_nbinom.stan'
                 data = list(N = nrow(simd2$data), 
                             y = simd2$data$qty, 
                             t = simd2$data$day),
                 control = list(stepsize = 0.01, 
                               adapt_delta = 0.99),
                 cores = 4,
                 iter = 400)

# truth: alpha = 8.5, beta = -0.10, phi = 10
samples <- rstan::extract(simd2_m2, 
                          pars = c('alpha', 
                          'beta',
                          'phi'))

> lapply(samples, quantile)
$alpha
  0%  25%  50%  75% 100% 
 8.3  8.4  8.5  8.6  8.8 

$beta
    0%    25%    50%    75%   100% 
-0.107 -0.102 -0.100 -0.099 -0.092 

$phi
  0%  25%  50%  75% 100% 
 6.2 10.1 11.5 13.0 24.1 



Looking at Posterior Draws
> pairs(simd2_m2)



Diagnostics with Shinystan



Product Pricing
Introduction to Pooling and Hirarchical Models



We Have Multiple Products, Authors, Genres



Hierarchical Pooling in One Slide

b↵multilevel
j ⇡

nj

�2
y
ȳj +

1
�2
↵
ȳall

nj

�2
y
+ 1

�2
↵

Estimate of average sales for book j 

Indexes books 

Within-book variance 

Variance among average sales of different books 

Number of observations for book j 
Average sales for book j 

Average sales across all books



Multi-Level Models using Lmer Syntax



Fitting Multi-Level Models in rstanarm

fit <- stan_glmer.nb(qty ~ product_age + price + price_sqr +
            (1 + product_age + price + price_sqr | product),
                                algorithm = "sampling",
                                seed = 123,
                                cores = 4,
                                iter = 600,
                                data = data)

“Fixed 
Effects”

Varying 
Intercepts

Varying 
Slopes Fit using 

MCMC

Random Seed

1 Core per 
Chain

Number of 
Iterations per 

Chain



Prediction and Checking: Posterior Predictive Distribution
▸ How can we tell if our model is sufficient for our task? 

▸ We can simulate from the model and compare to observed data 

▸ We can predict across interesting co-variates (e.g. change prices and observe how the 
model predicts qty over time)

p(ỹ|y) =
Z

⇥
p(ỹ|✓)p(✓|y)d✓Posterior Predictive 

Distribution

New Data
Data Used to Fit the 

Model
Likelihood Function Weighted by the Posterior

Average Over 
Theta



Assessing Model Performance: Posterior Predictive Checks, Calibration

0.0000
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0.0015
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ity

> pp_check(fit, check = “dist", overlay = TRUE)
> check_calib(d)
      in_90     in_50
1 0.9573893 0.7125305
> check_calib(d, TRUE)
Source: local data frame [203 x 3]

         id     in_90     in_50
      (dbl)     (dbl)     (dbl)
1  aaaaaaa1 0.9333333 0.7166667
2  aaaaaaa2 0.9500000 0.8333333
3  aaaaaaa3 0.9833333 0.8500000
4  aaaaaaa4 0.9666667 0.6500000
5  aaaaaaa5 0.9666667 0.7000000
6  aaaaaaa6 0.9833333 0.8833333
7  aaaaaaa7 0.9666667 0.6833333
8  aaaaaaa8 1.0000000 0.7666667
9  aaaaaaa9 0.8833333 0.6166667
10 aaaaaa10 0.9500000 0.8500000
..      ...       ...       ...



Prediction for Observed Prices
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Revenue Optimisation
Generating Model Counterfactuals



Generating New Prices
new_data <- generate_new_prices(data, price_grid = seq(1.99, 14.99, by = 1))

> new_data
# A tibble: 1,946 x 7
   prod_key_factor prod_key price ysd_scaled price_scaled price_sqr_scaled month
            <fctr>    <chr> <dbl>      <dbl>        <dbl>            <dbl> <dbl>
1         aaaaaaaa aaaaaaaa  1.99   1.595587  -3.58149701       -2.5113317     8
2         aaaaaaaa aaaaaaaa  2.99   1.595587  -3.19446355       -2.4144849     8
3         aaaaaaaa aaaaaaaa  3.99   1.595587  -2.80743009       -2.2787437     8
4         aaaaaaaa aaaaaaaa  4.99   1.595587  -2.42039662       -2.1041082     8
5         aaaaaaaa aaaaaaaa  5.99   1.595587  -2.03336316       -1.8905783     8
6         aaaaaaaa aaaaaaaa  6.99   1.595587  -1.64632970       -1.6381541     8
7         aaaaaaaa aaaaaaaa  7.99   1.595587  -1.25929624       -1.3468357     8
8         aaaaaaaa aaaaaaaa  8.99   1.595587  -0.87226277       -1.0166228     8
9         aaaaaaaa aaaaaaaa  9.99   1.595587  -0.48522931       -0.6475157     8
10        aaaaaaaa aaaaaaaa 10.99   1.595587  -0.09819585       -0.2395142     8
# ... with 1,936 more rows

pred_q <- posterior_predict(fit, newdata = new_data)



Computing Demand Curves and Revenue Predictions
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Some Papers and Videos

▸ Stan: A probabilistic programming language for Bayesian inference and 
optimization (Andrew Gelman, et. al.) http://www.stat.columbia.edu/~gelman/
research/published/stan_jebs_2.pdf 

▸ Stan: A Probabilistic Programming Language (Bob Carpenter, et. al.) http://
www.stat.columbia.edu/~gelman/research/published/stan-paper-revision-
feb2015.pdf 

▸ Hamiltonian Monte Carlo (Michael Betancourt) https://www.youtube.com/watch?
v=pHsuIaPbNbY 

▸ Stan Hands-on with Bob Carpenter https://www.youtube.com/watch?
v=6NXRCtWQNMg 

▸ A lot more available on mc-stan.org

http://www.stat.columbia.edu/~gelman/research/published/stan_jebs_2.pdf
http://www.stat.columbia.edu/~gelman/research/published/stan-paper-revision-feb2015.pdf
https://www.youtube.com/watch?v=pHsuIaPbNbY
https://www.youtube.com/watch?v=6NXRCtWQNMg
http://mc-stan.org


Merci Beaucoup!

▸eric@stan.fit 

▸@ericnovik 

▸mc-stan.org / stan.fit 

▸www.linkedin.com/in/enovik

http://www.linkedin.com/in/enovik

