NEW YORK, November 14 – With a wide range of new and improved features aimed at making data science, machine learning, and advanced analytics accessible to organizations as a whole, data science software maker Dataiku has today released Dataiku 4.1. The new and improved software platform acts as a central hub for technical and non-technical users to prototype, build, scale, deploy, and manage advanced data science products.
“We are focused on building a platform that is a single hub for an enterprise’s data science and machine learning development - that’s what this release reflects,” said Florian Douetteau, CEO of Dataiku. “Many of our customers already use Dataiku with hundreds of users from all different backgrounds, from data engineers, to developers, to non-technical analysts, to perform advanced analytics and to develop data science solutions. This latest release strengthens enterprise scale development and deployment of these solutions among and across teams.”
A new Dataiku with the same great functionalities, built for scale
Building upon the needs of Dataiku customers who have hundreds of users across their organizations around the world relying on the software, Dataiku 4.1 has been designed to accelerate scalable deployment while maintaining its powerful core functionalities such as:
In its latest release, Dataiku is introducing new features that further expand its capabilities as a single platform for everyone, including coders and clickers, spread across any sized organization around the world. “This release plays to our strength of enabling our largest customers to propagate data science expertise throughout the organization,” said Douetteau. “In fact, organizations who deploy Dataiku at scale have on average a 4:1 ratio of non-coding data specialists to data scientists using Dataiku.”
Data preparation tools for coders and non-coders
Dataiku 4.1 introduces new data preparation “recipes” within the Dataiku graphical interface that bring powerful analytical functionalities to non-coders, including pivoting, sorting, and splitting datasets.
For coders, the latest release brings advanced visualization libraries like RShiny and Bokeh for rapidly creating engaging interactive web applications within dashboards. Additionally, RMarkdown reports let users easily share their results outside of Dataiku.
New visual recipes such as Pivot bring analytical tools to non-coders.
Live Model Competitions - Compare models in real-time
With Dataiku’s “live model competition,” users compare the performance of a batch of machine learning models competing in real time without waiting for the entire training of the model. This reduces the training time and resources used by interrupting or resuming the competition once it yields satisfactory insights.
Additionally, model ensembling, which exploits the strengths of various models by combining different algorithms, is now possible without writing a single line of code.
Live model competitions show machine learning model results in real time.
Isolated coding environments for project stability
It is common for an organization to have many projects using different versions of Python, R, and libraries. Dataiku 4.1 now supports reproducible environments, which properly isolate projects and reproduce the runtime condition throughout the deployment phase. This alleviates the worry about one individual upgrading a package, because deployed code will remain stable.
Dataiku 4.1 bolsters the product’s end-to-end reach by introducing a versatile API node that scores models, runs custom Python and R functions, and accesses to datasets via parameterized SQL and custom functions. Additionally, the new release provides an extended toolkit for plugins.
To learn more about all of the features of Dataiku 4.1 visit: www.dataiku.com
To learn more about scaling analytics and machine learning capabilities, join Dataiku along with industry leaders at the EGG2017 conference for presentations on cutting-edge approaches and methodologies on non-conforming data science in New York City on November 30.
Dataiku is a unique advanced analytics software solution that enables companies to build and deliver their own data products more efficiently. Thanks to a collaborative and team-based user interface for data scientists and beginner analysts, to a unified framework for both development and deployment of data projects, and to immediate access to all the features and tools required to design data products from scratch, users can easily apply machine learning and data science techniques to all types, sizes, and formats of raw data to build and deploy predictive data flows.
Currently, hundreds of companies around the world, from Fortune 500s to SMBs, including L’Oreal, GE, NPR, and many others, use Dataiku on a daily basis to create, build, and deliver data products efficiently. Dataiku raised a $28M series B round in September of 2017, led by Battery Ventures.
Dataiku
Addison Huegel, Media Relations
Dataiku
1 (1 415) 315-9629
ahuegel@elevatorpr.com
©Dataiku 2012-2017 - Legal Notice