Introduction to Stan and Bayesian Inference

Paris Machine Learning Meetup Dataiku User Meetup 21 September 2016 Eric Novik <u>enovik@stan.fit</u>

Outline

- Why should you bother with Bayes
- Why should you use Stan
- Introduction to modern Bayesian workflow
- Building up a Stan model
- Pricing books using Stan and rstanarm package
- References and guide to getting started

• Brief introduction to pooling and magic of multi-level models

Benefits of Bayesian Approach

- Express your beliefs about parameters **and** the data generating process
- Properly account for uncertainty at the individual and group level
- Do not collapse grouping variables (e.g. sales for of multiple products over time) and do not fit a separate model to each group
- Small data is fine if you have a strong model
- But what about Big Data?

Big Data Need Big Models

Size of Data

Traditional Machine Learning and Causal Models

• **Problem A**: A large retailer wants to know how many units of each product they are going to sell tomorrow

> time, meta data about the products, and price variation

> • Question: Which one needs a causal model?

• **Problem B**: A large retailer wants to find a revenue maximizing price for all of their products

- **Data:** We observe quantity sold of each product of

What Is Stan

What C++ Math/Stats Library Imperative Model Specification Languag Algorithm Toolbox Interfaces (Command Line, R, Python, Julia, Matlab, Stata, ...) Interpretation Tools (shinystan)

	What For
	Mathematical specification of models; Automatic calculations of gradients
ge	Fast and simple way to specify complex models
	Fit with full Bayes, approximate Bayes, optimization (HMC NUTS, ADVI, L-BFGS)
	Work in the language of your choice
	Model critisism, algorithm evaluation

Who Is Using Stan

- ► 2,000+ members on the user list
- Over 10,000 manual downloads during the new release
- recommender systems, educational testing, and many more.

Random House

• Stan is used for fitting climate models, clinical drug trials, genomics and cancer biology, population dynamics, psycholinguistics, social networks, finance and econometrics, professional sports, publishing,

Stan vs Traditional Machine Learning

- Model is directly expressed in Stan
- When in MCMC mode Stan produces produces draws from posterior distribution, not point estimates (MLE) of the parameters
- Fit complex models with millions of parameters
- Express and fit hierarchical models

TRADITIONAL MACHINE LEARNING

Stan

Stan vs Gibbs and Metropolis

- > 2-d projection of a highly correlated 250-d distribution
- 1M samples from Metropolis and 1M samples from Gibbs
- 1K samples from NUTS

Hamiltonian Simulation

HAMILTONIAN SIMULATION bivariate normal (rho = 0.95, sigma=1) init position: (-1.5, -2) init momentum: (-2, -1) stepsize: 0.01

Bayesian Workflow

Bayesian Machinery

- The conditional probability of **theta** given **y**:

$$p(\theta|y) = \frac{p(y|\theta) * p(\theta)}{p(y)} = \frac{p(y|\theta) * p(\theta)}{f(y)}$$

• The joint probability of data y and unknown parameter theta:

 $p(y, \theta) = p(y|\theta) * p(\theta)$ $p(y,\theta) = p(\theta|y) * p(y)$

- $\propto p(y|\theta) * p(\theta)$
- Likelihood Prior $\frac{(y|\theta) * p(\theta)}{\int p(y,\theta)d\theta} = \frac{p(y|\theta) * p(\theta)}{\int p(y|\theta) * p(\theta)d\theta}$ Marginal Likelihood

Bernoulli Model

For the initial product of the prior,
$$p(\theta)$$
For the log scale:
 $\log(p(y,\theta)) = \sum_{n=1}^{N} y_n * \log(\theta) + \sum_{n=1}^{N} (1-y_n) * \log(1-\theta)$
data <- list(N = 5, y = c(0, 1, 1, 0, 1))
 $data <- list(N = 5, y = c(0, 1, 1, 0, 1))$
 $data <- list(N = 5, y = c(0, 1, 1, 0, 1))$
 $data <- list(N = 5, y = c(0, 1, 1, 0, 1))$
 $data <- list(N = 5, y = c(0, 1, 1, 0, 1))$
 $data <- list(N = 5, y = c(0, 1, 1, 0, 1))$
 $f = \sum_{n=1}^{N} \theta^{y_n} * (1-\theta)^{1-y_n} = \theta^{\sum_{n=1}^{N} y_n} * (1-\theta)^{\sum_{n=1}^{N} (1-y_n)} * \log(1-\theta)$
 $data <- list(N = 5, y = c(0, 1, 1, 0, 1))$
 $f = \sum_{n=1}^{N} \theta^{y_n} * (1-\theta)^{1-y_n} = \theta^{\sum_{n=1}^{N} y_n} * (1-\theta)^{\sum_{n=1}^{N} (1-y_n)} * \log(1-\theta)$
 $data <- list(N = 5, y = c(0, 1, 1, 0, 1))$
 $f = \sum_{n=1}^{N} \theta^{y_n} * (1-\theta)^{1-y_n} = \theta^{\sum_{n=1}^{N} y_n} * (1-\theta)^{\sum_{n=1}^{N} (1-y_n)} * \log(1-\theta)$
 $data <- list(N = 5, y = 0, y = c(0, 1, 1, 0, 1))$
 $f = \sum_{n=1}^{N} \theta^{y_n} * (1-\theta)^{1-y_n} = \theta^{\sum_{n=1}^{N} y_n} * (1-\theta)^{\sum_{n=1}^{N} (1-y_n)} * \log(1-\theta)$
 $data <- list(N = 5, y = 0, y = c(0, 1, 1, 0, 1))$
 $f = \sum_{n=1}^{N} \theta^{y_n} * (1-\theta)^{1-y_n} = \theta^{\sum_{n=1}^{N} y_n} * (1-\theta)^{\sum_{n=1}^{N} (1-y_n)} * \log(1-\theta)$
 $data <- list(N = 5, y = 0, y = c(0, 1, 1, 0, 1))$
 $f = \sum_{n=1}^{N} \theta^{y_n} * (1-\theta)^{1-y_n} = \theta^{\sum_{n=1}^{N} y_n} * (1-\theta)^{\sum_{n=1}^{N} (1-y_n)} * \log(1-\theta)$
 $data <- list(N = 5, y = 0, y = c(0, 1, 1, 0, 1))$
 $f = \sum_{n=1}^{N} \theta^{y_n} * (1-\theta)^{1-y_n} = \theta^{\sum_{n=1}^{N} y_n} * (1-\theta)^{\sum_{n=1}^{N} (1-y_n)} * \log(1-\theta)$
 $\theta = \sum_{n=1}^{N} \theta^{y_n} * \log(\theta) + \sum_{n=1}^{N} (1-y_n) * \log(1-\theta)$
 $\theta = \sum_{n=1}^{N} \theta^{y_n} * \log(\theta) + \sum_{n=1}^{N} (1-y_n) * \log(1-\theta)$
 $\theta = \sum_{n=1}^{N} \theta^{y_n} * \log(\theta) + \sum_{n=1}^{N} (1-y_n) * \log(1-\theta)$
 $\theta = \sum_{n=1}^{N} \theta^{y_n} * \log(\theta) + \sum_{n=1}^{N} (1-y_n) * \log(1-\theta)$
 $\theta = \sum_{n=1}^{N} \theta^{y_n} * \log(\theta) + \sum_{n=1}^{N} (1-y_n) * \log(1-\theta)$
 $\theta = \sum_{n=1}^{N} \theta^{y_n} * \log(\theta) + \sum_{n=1}^{N} (1-y_n) * \log(1-\theta)$

If we model each occurrence as independent, the joint model can be written as:
$$f(y, \theta) = \prod_{n=1}^{N} \theta^{y_n} * (1-\theta)^{1-y_n} = \theta^{\sum_{n=1}^{N} y_n} * (1-\theta)^{\sum_{n=1}^{N} (1-y_n)}$$

$$f(y, \theta) = \prod_{n=1}^{N} \theta^{y_n} * (1-\theta)^{1-y_n} = \theta^{\sum_{n=1}^{N} y_n} * (1-\theta)^{\sum_{n=1}^{N} (1-y_n)}$$

$$f(x) = 0$$

$$f(x) =$$

[i] + [i])

Bernoulli Model

prob = theta[i],log = TRUE)

Bernoulli Model

log p(theta | y)
posterior <- lp(theta = theta, data)
posterior <- exp(log_prob)</pre>

normalize
posterior <- posterior / sum(posterior)</pre>

Same Model in Stan

data { int<lower=1> N; int<lower=0, upper=1> y[N]; parameters { real theta; } model { for (n in 1:N)target += y[n] * log(theta) +(1 - y[n]) * log(1 - theta);}

$$\log(p(y,\theta)) = \sum_{n=1}^{N} y_n * \log(\theta) + \sum_{n=1}^{N} (1-y_n) * \log(1-\theta)$$

```
data {
  int<lower=1> N;
  int<lower=0, upper=1> y[N];
}
parameters {
  real<lower=0, upper=1> theta;
model {
  y ~ bernoulli(theta);
}
```


Anlytical Problem

- A large publisher has hundreds of thousands of books in the catalog
- Every year, thousands of new books (products) are published
- There are also new authors, repeat authors, genres, seasonality, and so on
- Publisher wants to maximize revenue but if uncertainty is high, maximize quantity sold
- How should we model this? (and what is this)?

Basic Model for Quantity Sold

 $qty = f(price, price^2, product_age, ...)$

- For a Gaussian model, and one product: $qty_i \sim N(X_i\beta, \sigma^2)$
- For products that sell thousands of units we would fit a log-log model
- For lower volume products that sometimes sell zero units, we fit a count model that does not force the mean to be equal to the variance

$$\begin{array}{l} qty \sim NegativeBinomial(\mu,\phi) \\ \mu = exp(\alpha + \beta_1 * product_age + \beta_2 * \\ \sigma^2 = \mu + \mu^2/\phi \end{array}$$

Simulating Data

```
if (process == "normal") {
 data <- data %>%
   mutate(qty = linkinv(product_intercept + product_beta_time * days + product_beta_price * price +
                  error_sd * rnorm(sum(n))) %>%
   mutate(qty = ifelse(qty <= 0, 0, round(qty)))</pre>
} else { # negative binomial
  data <- data %>%
   mutate(mu = linkinv(product_intercept + product_beta_time * day + product_beta_price * price)
          qty = MASS::rnegbin(n = sum(n), mu = mu, theta = theta))
```


What About the Real Data?

Quantity Sold

Product Age

Baseline Stan Model for Single Product

```
data {
  int<lower=0> N;
  int<lower=0> y[N];
  vector[N] t;
}
parameters {
  real alpha;
                    // overall mean
  real beta; // time beta
  real<lower=0> phi; // dispersion
}
model {
  vector[N] eta;
  // linear predictor
  eta = alpha + t * beta;
  // priors
  alpha \sim normal(0, 10);
  phi ~ cauchy(0, 2.5);
  beta ~ normal((0, 1);
  // likelihood
  y \sim neg_binomial_2_log(eta, phi);
}
```

simd2_m2 <- stan('m2_self_stan_nbinom.stan'</pre> data = list(N = nrow(simd2\$data),y = simd2\$data\$qty, t = simd2 (data(day)), control = list(stepsize = 0.01, $adapt_delta = 0.99),$ cores = 4, iter = 400)# truth: alpha = 8.5, beta = -0.10, phi = 10samples <- rstan::extract(simd2_m2,</pre> pars = c('alpha', 'beta', 'phi')) > lapply(samples, quantile) \$alpha 25% **50%** 75% 100% 8.3 8.4 8.5 8.6 8.8 \$beta 25% 50% 100% 0% 75% -0.107 -0.102 -0.100 -0.099 -0.092 \$phi 25% 50% 75% 100% 0% 6.2 10.1 11.5 13.0 24.1

Looking at Posterior Draws

> pairs(simd2_m2)

Diagnostics with Shinystan

Parameter	
alpha	

Jse your mouse or the sliders to select areas in the traceplot to zoom into. The other plots on the screen will update accordingly. **Double-click to reset.**

Parameter: alpha

arge red points indicate which (if any) iterations encountered a divergent transition. Yellow indicates a transition hitting the maximum treedepth.

Transformation			
identity	•	Transform	

Lines are mean (solid) and median (dashed)

 \parallel

Introduction to Pooling and Hirarchical Models

We Have Multiple Products, Authors, Genres

OBSERVATIONS

Hierarchical Pooling in One Slide

Number of observations for book j

Indexes books

Estimate of average sales for book j

Average sales across all books Average sales for book j

 $\widehat{\alpha}_{j}^{multilevel} \approx \frac{\frac{n_{j}}{\sigma_{y}^{2}}\overline{y}_{j} + \frac{1}{\sigma_{\alpha}^{2}}\overline{y}_{all}}{\varepsilon_{\alpha}^{2}}$

$$\frac{j}{2} + \frac{1}{\sigma_{\alpha}^2}$$

Within-book variance

Ο

Variance among average sales of different books

Multi-Level Models using Lmer Syntax

Formula	Alternative	Meaning
(1 g)	1 + (1 g)	Random intercept
		with fixed mean
0 + offset(o) + (1 g)	-1 + offset(o) + (1 g)	Random intercept
		with a priori means
(1 g1/g2)	(1 g1)+(1 g1:g2)	Intercept varying
		among g1 and g2
		within g1
(1 g1)+(1 g2)	1 + (1 g1) + (1 g2)	Intercept varying
		among g1 and g2
x + (x g)	1 + x + (1 + x g)	Correlated random
		intercept and slope
x + (x g)	1 + x + (1 g) + (0 + x g)	Uncorrelated random
		intercept and slope

Table 2: Examples of the right-hand sides of mixed-effects model formulas. The names of grouping factors are denoted g, g1, and g2, and covariates and *a priori* known offsets as x and o.

Fitting Multi-Level Models in rstanarm

"Fixed Effects"

fit <- stan_glmer.nb(qty ~ product_age + price + price_sqr +</pre>

Varying Intercepts

> Varying Slopes

Fit using MCMC

Prediction and Checking: Posterior Predictive Distribution

- How can we tell if our model is sufficient for our task?
- We can simulate from the model and compare to observed data
- model predicts qty over time)

Posterior Predictive — Distribution	$-p(\tilde{y} y) = \int_{0}^{\infty}$	e
New Data	Data Used to Fit the Model	L

• We can predict across interesting co-variates (e.g. change prices and observe how the

Average Over Theta

 $p(\tilde{y}|\theta)p(\theta|y)d\theta$

_ikelihood Function

Weighted by the Posterior

Assessing Model Performance: Posterior Predictive Checks, Calibration

• •

• • •

Prediction for Observed Prices

In Sample Predictions for 25 Random Products

Revenue Optin

Generating Model Counterfactuals

Generating New Prices

new_data <- generate_new_prices(data, price_grid = seq(1.99, 14.99, by = 1))</pre>

<pre>> new_data</pre>							
#	# A tibble: 1,946 x 7						
	prod_key_factor	prod_key	price	ysd_scaled	<pre>price_scaled</pre>	<pre>price_sqr_scaled</pre>	month
	<fctr></fctr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	aaaaaaaa	aaaaaaaa	1.99	1.595587	-3.58149701	-2.5113317	8
2	aaaaaaaa	aaaaaaaa	2.99	1.595587	-3.19446355	-2.4144849	8
3	aaaaaaaa	aaaaaaaa	3.99	1.595587	-2.80743009	-2.2787437	8
4	aaaaaaaa	aaaaaaaa	4.99	1.595587	-2.42039662	-2.1041082	8
5	aaaaaaaa	aaaaaaaa	5.99	1.595587	-2.03336316	-1.8905783	8
6	aaaaaaaa	aaaaaaaa	6.99	1.595587	-1.64632970	-1.6381541	8
7	aaaaaaaa	aaaaaaaa	7.99	1.595587	-1.25929624	-1.3468357	8
8	aaaaaaaa	aaaaaaaa	8.99	1.595587	-0.87226277	-1.0166228	8
9	aaaaaaaa	aaaaaaaa	9.99	1.595587	-0.48522931	-0.6475157	8
10	aaaaaaaa	aaaaaaaa	10.99	1.595587	-0.09819585	-0.2395142	8
# with 1,936 more rows							

pred_q <- posterior_predict(fit, newdata = new_data)</pre>

Computing Demand Curves and Revenue Predictions

Books

Data Analysis Using Regression and Multilevel/Hierarchical Models

CAMBRIDGE

ANDREW GELMAN JENNIFER HILL

Texts in Statistical Science

Statistical Rethinking A Bayesian Course with Examples in R and Stan

Richard McElreath

Third Edition

Some Papers and Videos

- Stan: A probabilistic programming language for Bayesian inference and research/published/stan_jebs_2.pdf
- Stan: A Probabilistic Programming Language (Bob Carpenter, et. al.) http:// feb2015.pdf
- v=pHsuIaPbNbY
- Stan Hands-on with Bob Carpenter https://www.youtube.com/watch? v=6NXRCtWQNMg
- A lot more available on <u>mc-stan.org</u>

optimization (Andrew Gelman, et. al.) http://www.stat.columbia.edu/~gelman/

www.stat.columbia.edu/~gelman/research/published/stan-paper-revision-

• Hamiltonian Monte Carlo (Michael Betancourt) https://www.youtube.com/watch?

Merci Beaucoup!

eric@stan.fit

- @ericnovik
- mc-stan.org / stan.fit
- www.linkedin.com/in/enovik

