Introduction to Stan and Bayesian Inference

Paris Machine Learning Meetup
Dataiku User Meetup
21 September 2016
Eric Novik enovik@stan.fit

Outline

- Why should you bother with Bayes
- Why should you use Stan
- Introduction to modern Bayesian workflow
- Building up a Stan model
- Brief introduction to pooling and magic of multi-level models
- Pricing books using Stan and rstanarm package
- References and guide to getting started

Benefits of Bayesian Approach

- Express your beliefs about parameters and the data generating process
- Properly account for uncertainty at the individual and group level
- Do not collapse grouping variables (e.g. sales for of multiple products over time) and do not fit a separate model to each group
- Small data is fine if you have a strong model
- But what about Big Data?

Big Data Need Big Models

Size of Data

Traditional Machine Learning and Causal Models

- Problem A: A large retailer wants to know how many units of each product they are going to sell tomorrow
- Problem B: A large retailer wants to find a revenue maximizing price for all of their products
- Data: We observe quantity sold of each product of time, meta data about the products, and price variation
- Question: Which one needs a causal model?

What Is Stan

What
 What For

C++ Math/Stats Library

Imperative Model Specification Language

Algorithm Toolbox

Interfaces (Command Line, R, Python, Julia, Matlab, Stata, ...)

Interpretation Tools (shinystan)

Mathematical specification of models; Automatic calculations of gradients

Fast and simple way to specify complex models

Fit with full Bayes, approximate Bayes, optimization (HMC NUTS, ADVI, L-BFGS)

Work in the language of your choice

Model critisism, algorithm evaluation

Who Is Using Stan

- 2,000+ members on the user list
- Over 10,000 manual downloads during the new release
- Stan is used for fitting climate models, clinical drug trials, genomics and cancer biology, population dynamics, psycholinguistics, social networks, finance and econometrics, professional sports, publishing, recommender systems, educational testing, and many more.

Stan vs Traditional Machine Learning

- Model is directly expressed in Stan
- When in MCMC mode Stan produces produces draws from posterior distribution, not point estimates (MLE) of the parameters
- Fit complex models with millions of parameters
- Express and fit hierarchical models

TRADITIONAL MACHINE LEARNING

Stan vs Gibbs and Metropolis

- 2-d projection of a highly correlated 250-d distribution
- 1M samples from Metropolis and 1M samples from Gibbs
- 1K samples from NUTS

Hamiltonian Simulation

HAMILTONIAN SIMULATION bivariate normal $($ rho $=0.95$, sigma=1) init position: $(-1.5,-2)$ init momentum: $(-2,-1)$ stepsize: 0.005

HAMILTONIAN SIMULATION bivariate normal (rho $=0.95$, sigma $=1$) init position: $(-1.5,-2)$ init momentum: $(-2,-1)$ stepsize: 0.025

HAMILTONIAN SIMULATION bivariate normal (rho $=0.95$, sigma=1) init position: $(-1.5,-2)$ init momentum: $(-2,-1)$ stepsize: 0.01

Bayesian Workflow

Bayesian Machinery

- The joint probability of data \mathbf{y} and unknown parameter theta:

$$
\begin{aligned}
& p(y, \theta)=p(y \mid \theta) * p(\theta) \\
& p(y, \theta)=p(\theta \mid y) * p(y)
\end{aligned}
$$

- The conditional probability of theta given \mathbf{y} :

$$
\begin{aligned}
& p(\theta \mid y)=\frac{p(y \mid \theta) * p(\theta)}{p(y)}=\frac{p(y \mid \theta) * p(\theta)}{\int p(y, \theta) d \theta}=\frac{p(y \mid \theta) * p(\theta)}{\int p(y \mid \theta) * p(\theta) d \theta} \\
& \propto p(y \mid \theta) * p(\theta)
\end{aligned}
$$

Bernoulli Model

- If we model each occurrence as independent, the joint model can be written as:

$$
p(y, \theta)=\prod_{n=1}^{N} \theta^{\text {Bernoulli Likelihood } p(y \mid \theta)} \text { 桨} *(1-\theta)^{1-y_{n}}=\theta^{\sum_{n=1}^{N} y_{n}} *(1-\theta)^{\sum_{n=1}^{N}\left(1-y_{n}\right)}
$$

- What happened to the prior, $p(\theta)$
- On the log scale:

$$
\log (p(y, \theta))=\sum_{n=1}^{N} y_{n} * \log (\theta)+\sum_{n=1}^{N}\left(1-y_{n}\right) * \log (1-\theta)
$$

$$
\begin{aligned}
\text { data }<-\operatorname{list}(N & =5, \\
y & =c(0,1,1,0,1))
\end{aligned}
$$

\# log probability function
lp <- function(theta, data) \{

$$
\mathrm{lp}<-0
$$

for (i in 1:data\$N) \{

$$
\operatorname{lp}<-\operatorname{lp}+\log (\text { theta }) * \operatorname{data\$ y[i]}+
$$

 \(\log \left(1-t^{2}+\right)^{*}(1-\operatorname{data} \$ y[i])\)
 \}
 return(lp)
 \}

Bernoulli Model

```
# using dbinom()
lp_dbinom <- function(theta, d) {
    lp <- 0
    for (i in 1:length(theta))
            lp[i] <- sum(dbinom(d$y, size = 1,
                                    prob = theta[i],
                        log = TRUE))
    return(lp)
}
> lp(c(0.6, 0.7), data)
    [1] -3.365058 -3.477970
> lp_dbinom(c(0.6, 0.7), data)
[1] -3.365058 -3.477970
```


Bernoulli Model

```
# generate the parameter grid
theta <- seq(0.001, 0.999,
    length.out = 250)
# log p(theta | y)
posterior <- lp(theta = theta, data)
posterior <- exp(log_prob)
# normalize
posterior <- posterior / sum(posterior)
# sample from the posterior
post_draws <- sample(theta, size = 1e5,
    replace = TRUE,
    prob = posterior)
post_dens <- density(post_draws)
mle <- sum(data$y) / data$N
> mle
[1] 0.6
```


Same Model in Stan


```
data {
    int<lower=1> N;
    int<lower=0, upper=1> y[N];
}
parameters {
    real<lower=0, upper=1> theta;
}
model {
    y ~ bernoulli(theta);
}
```

$$
\log (p(y, \theta))=\sum_{n=1}^{N} y_{n} * \log (\theta)+\sum_{n=1}^{N}\left(1-y_{n}\right) * \log (1-\theta)
$$

Anlytical Problem

- A large publisher has hundreds of thousands of books in the catalog
- Every year, thousands of new books (products) are published
- There are also new authors, repeat authors, genres, seasonality, and so on
- Publisher wants to maximize revenue but if uncertainty is high, maximize quantity sold
- How should we model this? (and what is this)?

Basic Model for Quantity Sold

$$
q t y=f\left(\text { price }, \text { price }{ }^{2}, \text { product_age }, \ldots\right)
$$

- For a Gaussian model, and one product:

$$
q t y_{i} \sim N\left(X_{i} \beta, \sigma^{2}\right)
$$

- For products that sell thousands of units we would fit a log-log model
- For lower volume products that sometimes sell zero units, we fit a count model that does not force the mean to be equal to the variance

$$
\begin{gathered}
q t y \sim \text { NegativeBinomial }(\mu, \phi) \\
\mu=\exp \left(\alpha+\beta_{1} * \text { product_age }+\beta_{2} * \text { price }+\ldots\right) \\
\sigma^{2}=\mu+\mu^{2} / \phi
\end{gathered}
$$

simd2 <- hir_data_sim(N_prod = 1, global_intercept $=8.5$, theta $=10$,
qty_process = "negbinom",
primary_price_process = "none",
... $\mathrm{linkinv}=\exp$)
... $\mathrm{linkinv}=\exp$)
路

Simulating Data

if (process == "normal") \{
data <- data \%>\%
mutate(qty = linkinv(product_intercept + product_beta_time * days + product_beta_price * price + error_sd * rnorm(sum(n)))) \%>\%
mutate (qty $=$ ifelse(qty $<=0,0$, round(qty)))
\} else \{ \# negative binomial
data <- data \%>\%
mutate(mu = linkinv(product_intercept + product_beta_time * day + product_beta_price * price)

$$
\text { qty }=\text { MASS: :rnegbin(} n=\operatorname{sum}(n), m u=m u \text {, theta }=\text { theta)) }
$$

\}

What About the Real Data?

Baseline Stan Model for Single Product

```
data {
    int<lower=0> N;
    int<lower=0> y[N];
    vector[N] t;
}
parameters {
    real alpha; // overall mean
    real beta; // time beta
    real<lower=0> phi; // dispersion
}
model {
    vector[N] eta;
    // linear predictor
    eta = alpha + t * beta;
    // priors
    alpha ~ normal(0, 10);
    phi ~ cauchy(0, 2.5);
    beta ~ normal(0, 1);
    // likelihood
    y ~ neg_binomial_2_log(eta, phi);
}
```

```
simd2_m2 <- stan('m2_self_stan_nbinom.stan'
    data = list(N = nrow(simd2$data),
                            y = simd2$data$qty,
                            t = simd2$data$day),
    control = list(stepsize = 0.01,
                                adapt_delta = 0.99),
    cores = 4,
    iter = 400)
# truth: alpha = 8.5, beta = -0.10, phi = 10
samples <- rstan::extract(simd2_m2,
    pars = c('alpha',
    'beta',
    'phi'))
> lapply(samples, quantile)
$alpha
    0% 25% 50% 75% 100%
8.3}80.4 8.5 8.6 8.8 
$beta
\begin{tabular}{rrrrr}
\(0 \%\) & \(25 \%\) & \(50 \%\) & \(75 \%\) & \(100 \%\)
\end{tabular}
$phi
    0% 25% 50% 75% 100%
    6.2 10.1 11.513.0 24.1
```


Looking at Posterior Draws

> pairs(simd2_m2)

Diagnostics with Shinystan

Parameter

alpha

Transformation
identity \quad Transform

Jse your mouse or the sliders to select areas in the traceplot to zoom into. The other plots on the screen will update accordingly.)ouble-click to reset.

Lines are mean (solid) and median (dashed)

arge red points indicate which (if any) iterations encountered a divergent transition. Yellow indicates a transition hitting the maximum treedepth.

We Have Multiple Products, Authors, Genres

Levelt \{ author, author 2 Lad $2\{$ mookl Boonz mooks pookll dayl dayz day, daye dayz day3!.

OBSERVATIONS

Hierarchical Pooling in One Slide

Average sales across all books
Average sales for book j
Number of observations for book j

Estimate of average sales for book j
$\approx \frac{\frac{n_{j}}{\sigma_{y}^{2}} \bar{y}_{j}+\frac{1}{\sigma_{\alpha}^{2}} \bar{y}_{a l l}}{\frac{n_{j}}{\sigma_{y}^{2}}+\frac{1}{\sigma_{\alpha}^{2}}}$
Variance among average sales of different books

Multi-Level Models using Lmer Syntax

Formula	Alternative	Meaning
$(1 \mid \mathrm{g})$	$1+(1 \mid \mathrm{g})$	Random intercept with fixed mean
$0+$ offset $(0)+(1 \mid \mathrm{g})$	$-1+$ offset $(\mathrm{o})+(1 \mid \mathrm{g})$	Random intercept with a priori means
$(1 \mid \mathrm{g} 1 / \mathrm{g} 2)$	$(1 \mid \mathrm{g} 1)+(1 \mid \mathrm{g} 1: \mathrm{g} 2)$	Intercept varying among g 1 and g 2 within g 1
$(1 \mid \mathrm{g} 1)+(1 \mid \mathrm{g} 2)$	$1+(1 \mid \mathrm{g} 1)+(1 \mid \mathrm{g} 2)$	Intercept varying among g 1 and g 2
$\mathrm{x}+(\mathrm{x} \mid \mathrm{g})$	$1+\mathrm{x}+(1+\mathrm{x} \mid \mathrm{g})$	Correlated random intercept and slope
$\mathrm{x}+(\mathrm{x}\| \| \mathrm{g})$	$1+\mathrm{x}+(1 \mid \mathrm{g})+(0+\mathrm{x} \mid \mathrm{g})$	Uncorrelated random intercept and slope

Table 2: Examples of the right-hand sides of mixed-effects model formulas. The names of grouping factors are denoted $\mathrm{g}, \mathrm{g} 1$, and g 2 , and covariates and a priori known offsets as x and o.

Fitting Multi-Level Models in rstanarm

Prediction and Checking: Posterior Predictive Distribution

- How can we tell if our model is sufficient for our task?
- We can simulate from the model and compare to observed data
- We can predict across interesting co-variates (e.g. change prices and observe how the model predicts qty over time)

Assessing Model Performance: Posterior Predictive Checks, Calibration

```
> pp_check(fit, check = "dist", overlay = TRUE)
```


Prediction for Observed Prices

In Sample Predictions for 25 Random Products

30790785

69815751

34552794

110101473

110115962

38553935

110102219

110117171

55339064

110104657

110118616

110111869

110120782

Generating New Prices

```
new_data <- generate_new_prices(data, price_grid = seq(1.99, 14.99, by = 1))
> new_data
# A tibble: 1,946 x 7
    prod_key_factor prod_key price ysd_scaled price_scaled price_sqr_scaled month
                <fctr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 aaaaaaaa aaaaaaaa 1.99 1.595587 -3.58149701 
2 aaaaaaaa aaaaaaaa 2.99 1.595587 -3.19446355 
3 aaaaaaaa aaaaaaaa 3.99 1.595587 -2.80743009 %
4 aaaaaaaa aaaaaaaa 4.99 1.595587 -2.42039662 
5 aaaaaaaa aaaaaaaa 5.99 1.595587 -2.03336316 
6 aaaaaaaa aaaaaaaa 6.99 1.595587 -1.64632970 
7 aaaaaaaa aaaaaaaa 7.99 1.595587 -1.25929624 
8 aaaaaaaa aaaaaaaa 8.99 1.595587 -0.87226277 
9 aaaaaaaa aaaaaaaa 9.99 1.595587 -0.48522931 
10 aaaaaaaa aaaaaaaa 10.99 1.595587 -0.09819585 
```

\# ... with 1,936 more rows
pred_q <- posterior_predict(fit, newdata = new_data)

Computing Demand Curves and Revenue Predictions

Data Analysis

Using Regression and Multilevel/Hierarchical Models

Texts in Statistical Science

Statistical Rethinking

A Bayesian Course with Examples in R and Stan

Richard McElreath

CRC Press CHAPMAN \& Hall sook

Bayesian Data Analysis

Third Edition

Andrew Gelman, John B. Carlin, Hal S. Stern,
David B. Dunson, Aki Vehtari, and Donald B. Rubin

Some Papers and Videos

- Stan: A probabilistic programming language for Bayesian inference and optimization (Andrew Gelman, et. al.) http://www.stat.columbia.edu/~gelman/ research/published/stan_jebs_2.pdf
- Stan: A Probabilistic Programming Language (Bob Carpenter, et. al.) http:// www.stat.columbia.edu/~gelman/research/published/stan-paper-revisionfeb2015.pdf
- Hamiltonian Monte Carlo (Michael Betancourt) https://www.youtube.com/watch? $\mathrm{v}=\mathrm{pHsuIaPbNbY}$
- Stan Hands-on with Bob Carpenter https://www.youtube.com/watch? $\mathrm{v}=6 \mathrm{NXRCtWQNMg}$
- A lot more available on mc-stan.org

Merci Beaucoup!

- eric@stan.fit
- @ericnovik
- mc-stan.org / stan.fit
-www.linkedin.com/in/enovik

S
 StanGroup

