
Introduction to Stan and
Bayesian Inference
Paris Machine Learning Meetup
Dataiku User Meetup
21 September 2016
Eric Novik enovik@stan.fit

mailto:enovik@stan.fit

▸Why should you bother with Bayes

▸Why should you use Stan

▸ Introduction to modern Bayesian workflow

▸ Building up a Stan model

▸ Brief introduction to pooling and magic of multi-level models

▸ Pricing books using Stan and rstanarm package

▸ References and guide to getting started

Outline

Why Bayes

▸ Express your beliefs about parameters and the data generating
process

▸ Properly account for uncertainty at the individual and group level

▸ Do not collapse grouping variables (e.g. sales for of multiple products
over time) and do not fit a separate model to each group

▸ Small data is fine if you have a strong model

▸ But what about Big Data?

Benefits of Bayesian Approach

Big Data Need Big Models

Size of Data

M
od

el
 C

om
pl

ex
ity

BIG DATA

 BIG MODELS

▸ Problem A: A large retailer
wants to know how many units of
each product they are going to sell
tomorrow

Traditional Machine Learning and Causal Models

▸ Problem B: A large retailer
wants to find a revenue
maximizing price for all of their
products

▸ Data: We observe quantity sold of each product of
time, meta data about the products, and price
variation

▸ Question: Which one needs a causal model?

Why Stan

What Is Stan

What What For

C++ Math/Stats Library Mathematical specification of models;
Automatic calculations of gradients

Imperative Model Specification Language Fast and simple way to specify complex
models

Algorithm Toolbox Fit with full Bayes, approximate Bayes,
optimization (HMC NUTS, ADVI, L-BFGS)

Interfaces (Command Line, R, Python,
Julia, Matlab, Stata, …) Work in the language of your choice

Interpretation Tools (shinystan) Model critisism, algorithm evaluation

▸ 2,000+ members on the user list

▸ Over 10,000 manual downloads during the new release

▸ Stan is used for fitting climate models, clinical drug trials, genomics
and cancer biology, population dynamics, psycholinguistics, social
networks, finance and econometrics, professional sports, publishing,
recommender systems, educational testing, and many more.

Who Is Using Stan

▸ Model is directly expressed in Stan

▸ When in MCMC mode Stan
produces produces draws from
posterior distribution, not point
estimates (MLE) of the
parameters

▸ Fit complex models with millions
of parameters

▸ Express and fit hierarchical
models

Stan vs Traditional Machine Learning

Stan vs Gibbs and Metropolis

▸ 2-d projection of a highly correlated 250-d distribution

▸ 1M samples from Metropolis and 1M samples from Gibbs

▸ 1K samples from NUTS

Hamiltonian Simulation

Intro to Bayes
with Modern Bayesian Workflow

Bayesian Workflow

GATHER PRIOR
KNOWLEDGE

FORMULATE A
GENERATIVE MODEL SIMULATE FAKE DATA

FIT FAKE DATA AND
RECOVER

PARAMETERS
FIT THE MODEL TO

REAL DATA

EVALUATE AND
CRITICIZE THE MODEL

ADD STRUCTURE TO
THE MODEL

GOOD
ENOUGH?

PREDICT FOR NEW
DATA / MAKE A

DECISION

yes

▸ The joint probability of data y and unknown parameter theta:

Bayesian Machinery

p(y, ✓) = p(y|✓) ⇤ p(✓)
p(y, ✓) = p(✓|y) ⇤ p(y)

▸ The conditional probability of theta given y:
Likelihood Prior

Marginal Likelihood

p(✓|y) = p(y|✓) ⇤ p(✓)
p(y)

=
p(y|✓) ⇤ p(✓)R

p(y, ✓)d✓
=

p(y|✓) ⇤ p(✓)R
p(y|✓) ⇤ p(✓)d✓

/ p(y|✓) ⇤ p(✓)

Bernoulli Model

▸ If we model each occurrence as independent, the
joint model can be written as:

▸ What happened to the prior,

Bernoulli Likelihood

p(✓)

p(y|✓)

p(y, ✓) =
NY

n=1

✓yn ⇤ (1� ✓)1�yn = ✓
PN

n=1 yn ⇤ (1� ✓)
PN

n=1(1�yn)

log(p(y, ✓)) =
NX

n=1

yn ⇤ log(✓) +
NX

n=1

(1� yn) ⇤ log(1� ✓)

▸ On the log scale:

data <- list(N = 5,
 y = c(0, 1, 1, 0, 1))

log probability function
lp <- function(theta, data) {
 lp <- 0
 for (i in 1:data$N) {
 lp <- lp + log(theta) * data$y[i] +
 log(1 - theta) * (1 - data$y[i])
 }
 return(lp)
}

Bernoulli Model
using dbinom()
lp_dbinom <- function(theta, d) {
 lp <- 0
 for (i in 1:length(theta))
 lp[i] <- sum(dbinom(d$y, size = 1,
 prob = theta[i],
 log = TRUE))
 return(lp)
}

> lp(c(0.6, 0.7), data)
[1] -3.365058 -3.477970

> lp_dbinom(c(0.6, 0.7), data)
[1] -3.365058 -3.477970

Bernoulli Model

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00
Theta

generate the parameter grid
theta <- seq(0.001, 0.999,
 length.out = 250)

log p(theta | y)
posterior <- lp(theta = theta, data)
posterior <- exp(log_prob)

normalize
posterior <- posterior / sum(posterior)

sample from the posterior
post_draws <- sample(theta, size = 1e5,
 replace = TRUE,
 prob = posterior)
post_dens <- density(post_draws)
mle <- sum(data$y) / data$N
> mle
[1] 0.6

Same Model in Stan
data {
 int<lower=1> N;
 int<lower=0, upper=1> y[N];
}
parameters {
 real theta;
}
model {
 for (n in 1:N)
 target += y[n] * log(theta) +
 (1 - y[n]) * log(1 - theta);
}

log(p(y, ✓)) =
NX

n=1

yn ⇤ log(✓) +
NX

n=1

(1� yn) ⇤ log(1� ✓)

data {
 int<lower=1> N;
 int<lower=0, upper=1> y[N];
}
parameters {
 real<lower=0, upper=1> theta;
}
model {
 y ~ bernoulli(theta);
}

Product Pricing
Basic Model and Data Simulation

Anlytical Problem

▸ A large publisher has hundreds of thousands of
books in the catalog

▸ Every year, thousands of new books (products)
are published

▸ There are also new authors, repeat authors,
genres, seasonality, and so on

▸ Publisher wants to maximize revenue but if
uncertainty is high, maximize quantity sold

▸ How should we model this? (and what is this)?

Basic Model for Quantity Sold

▸ For a Gaussian model, and one product:

qtyi ⇠ N(Xi�,�
2)

▸ For products that sell thousands of units we
would fit a log-log model

▸ For lower volume products that sometimes sell
zero units, we fit a count model that does not
force the mean to be equal to the variance

qty = f(price, price2, product age, ...)

µ = exp(↵+ �1 ⇤ product age+ �2 ⇤ price+ ...)

qty ⇠ NegativeBinomial(µ,�)

�2 = µ+ µ2/�

1

0

1000

2000

3000

4000

EL

0 20 40 60
Product Age

Si
m

ul
at

ed
 Q

ua
nt

ity
 S

ol
d

simd2 <- hir_data_sim(N_prod = 1,
 global_intercept = 8.5,
 theta = 10,
 qty_process = "negbinom",
 primary_price_process = "none",
 …
 linkinv = exp)

Simulating Data
if (process == "normal") {
 data <- data %>%
 mutate(qty = linkinv(product_intercept + product_beta_time * days + product_beta_price * price +
 error_sd * rnorm(sum(n)))) %>%
 mutate(qty = ifelse(qty <= 0, 0, round(qty)))
} else { # negative binomial
 data <- data %>%
 mutate(mu = linkinv(product_intercept + product_beta_time * day + product_beta_price * price)
 qty = MASS::rnegbin(n = sum(n), mu = mu, theta = theta))
}

1 2 3 4

0

1000

2000

3000

EL

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
Product Age

Si
m

ul
at

ed
 Q

ua
nt

ity
 S

ol
d

What About the Real Data?

Baseline Stan Model for Single Product
data {
 int<lower=0> N;
 int<lower=0> y[N];
 vector[N] t;
}
parameters {
 real alpha; // overall mean
 real beta; // time beta
 real<lower=0> phi; // dispersion
}
model {
 vector[N] eta;
 // linear predictor
 eta = alpha + t * beta;
 // priors
 alpha ~ normal(0, 10);
 phi ~ cauchy(0, 2.5);
 beta ~ normal(0, 1);
 // likelihood
 y ~ neg_binomial_2_log(eta, phi);
}

simd2_m2 <- stan('m2_self_stan_nbinom.stan'
 data = list(N = nrow(simd2$data),
 y = simd2$data$qty,
 t = simd2$data$day),
 control = list(stepsize = 0.01,
 adapt_delta = 0.99),
 cores = 4,
 iter = 400)

truth: alpha = 8.5, beta = -0.10, phi = 10
samples <- rstan::extract(simd2_m2,
 pars = c('alpha',
 'beta',
 'phi'))

> lapply(samples, quantile)
$alpha
 0% 25% 50% 75% 100%
 8.3 8.4 8.5 8.6 8.8

$beta
 0% 25% 50% 75% 100%
-0.107 -0.102 -0.100 -0.099 -0.092

$phi
 0% 25% 50% 75% 100%
 6.2 10.1 11.5 13.0 24.1

Looking at Posterior Draws
> pairs(simd2_m2)

Diagnostics with Shinystan

Product Pricing
Introduction to Pooling and Hirarchical Models

We Have Multiple Products, Authors, Genres

Hierarchical Pooling in One Slide

b↵multilevel
j ⇡

nj

�2
y
ȳj +

1
�2
↵
ȳall

nj

�2
y
+ 1

�2
↵

Estimate of average sales for book j

Indexes books

Within-book variance

Variance among average sales of different books

Number of observations for book j
Average sales for book j

Average sales across all books

Multi-Level Models using Lmer Syntax

Fitting Multi-Level Models in rstanarm

fit <- stan_glmer.nb(qty ~ product_age + price + price_sqr +
 (1 + product_age + price + price_sqr | product),
 algorithm = "sampling",
 seed = 123,
 cores = 4,
 iter = 600,
 data = data)

“Fixed
Effects”

Varying
Intercepts

Varying
Slopes Fit using

MCMC

Random Seed

1 Core per
Chain

Number of
Iterations per

Chain

Prediction and Checking: Posterior Predictive Distribution
▸ How can we tell if our model is sufficient for our task?

▸ We can simulate from the model and compare to observed data

▸ We can predict across interesting co-variates (e.g. change prices and observe how the
model predicts qty over time)

p(ỹ|y) =
Z

⇥
p(ỹ|✓)p(✓|y)d✓Posterior Predictive

Distribution

New Data
Data Used to Fit the

Model
Likelihood Function Weighted by the Posterior

Average Over
Theta

Assessing Model Performance: Posterior Predictive Checks, Calibration

0.0000

0.0005

0.0010

0.0015

0 1000 2000 3000 4000 5000
y

de
ns
ity

> pp_check(fit, check = “dist", overlay = TRUE)
> check_calib(d)
 in_90 in_50
1 0.9573893 0.7125305
> check_calib(d, TRUE)
Source: local data frame [203 x 3]

 id in_90 in_50
 (dbl) (dbl) (dbl)
1 aaaaaaa1 0.9333333 0.7166667
2 aaaaaaa2 0.9500000 0.8333333
3 aaaaaaa3 0.9833333 0.8500000
4 aaaaaaa4 0.9666667 0.6500000
5 aaaaaaa5 0.9666667 0.7000000
6 aaaaaaa6 0.9833333 0.8833333
7 aaaaaaa7 0.9666667 0.6833333
8 aaaaaaa8 1.0000000 0.7666667
9 aaaaaaa9 0.8833333 0.6166667
10 aaaaaa10 0.9500000 0.8500000
..

Prediction for Observed Prices

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●●

●

●

●●

●●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●●●
●
●

●●
●

●

●

●
●
●●

●

●

●●

●

●

●
●

●
●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●
●
●
●●

●

●●
●

●
●

●
●

●
●

●
●

●●

●

●●
●●

●

●

●●

●

●
●
●

●

●
●
●●

●
●

●

●

●

●●●●●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●●●

●
●●●●

●

●●

●

●

●●

●●

●
●●●●●●

●
●●●●●●●●●

●●●
●
●

●
●

●●

●
●
●
●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●
●

●●●

●

●●
●

●●

●

●●

●

●
●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●
●
●●

●

●

●
●●

●

●●

●

●

●

●

●

●
●
●●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●
●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●●●
●

●

●

●

●
●
●●●

●

●●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●●
●

●
●

●

●

●

●

●●
●
●

●
●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

30790785 34552794 38553935 55339064 67960435

69815751 110101473 110102219 110104657 110111869

110114715 110115962 110117171 110118616 110120782

110155985 110160375 110160607 110160728 110187045

144061978 144062333 144065016 144067929 144067955

Age of the Title in Years

M
od

el
 P

re
di

ct
io

n
fo

r Q
ua

nt
ity

 S
ol

d

5

10

price

In Sample Predictions for 25 Random Products

Revenue Optimisation
Generating Model Counterfactuals

Generating New Prices
new_data <- generate_new_prices(data, price_grid = seq(1.99, 14.99, by = 1))

> new_data
A tibble: 1,946 x 7
 prod_key_factor prod_key price ysd_scaled price_scaled price_sqr_scaled month
 <fctr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 aaaaaaaa aaaaaaaa 1.99 1.595587 -3.58149701 -2.5113317 8
2 aaaaaaaa aaaaaaaa 2.99 1.595587 -3.19446355 -2.4144849 8
3 aaaaaaaa aaaaaaaa 3.99 1.595587 -2.80743009 -2.2787437 8
4 aaaaaaaa aaaaaaaa 4.99 1.595587 -2.42039662 -2.1041082 8
5 aaaaaaaa aaaaaaaa 5.99 1.595587 -2.03336316 -1.8905783 8
6 aaaaaaaa aaaaaaaa 6.99 1.595587 -1.64632970 -1.6381541 8
7 aaaaaaaa aaaaaaaa 7.99 1.595587 -1.25929624 -1.3468357 8
8 aaaaaaaa aaaaaaaa 8.99 1.595587 -0.87226277 -1.0166228 8
9 aaaaaaaa aaaaaaaa 9.99 1.595587 -0.48522931 -0.6475157 8
10 aaaaaaaa aaaaaaaa 10.99 1.595587 -0.09819585 -0.2395142 8
... with 1,936 more rows

pred_q <- posterior_predict(fit, newdata = new_data)

Computing Demand Curves and Revenue Predictions

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●

●

●

●
● ●

● ● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

●

●

●

●

●

●

●

●

●
● ● ●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

110101473 110104257 110107791 110119006

110121384 110122130 110122150 110140423

110143663 110144412 110152875 110154871

144065803 69813628 69817799 69840712

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

Hypothetical Price

M
od

el
 P

re
di

ct
io

n
fo

r Q
ua

nt
ity

 S
ol

d

●

●
● ●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

110101473 110104257 110107791 110119006

110121384 110122130 110122150 110140423

110143663 110144412 110152875 110154871

144065803 69813628 69817799 69840712

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

1.
99

3.
99

5.
99

7.
99

9.
99

11
.9

9

13
.9

9

Hypothetical Price

M
od

el
 P

re
di

ct
io

n
fo

r R
ev

en
ue

References

Books

Some Papers and Videos

▸ Stan: A probabilistic programming language for Bayesian inference and
optimization (Andrew Gelman, et. al.) http://www.stat.columbia.edu/~gelman/
research/published/stan_jebs_2.pdf

▸ Stan: A Probabilistic Programming Language (Bob Carpenter, et. al.) http://
www.stat.columbia.edu/~gelman/research/published/stan-paper-revision-
feb2015.pdf

▸ Hamiltonian Monte Carlo (Michael Betancourt) https://www.youtube.com/watch?
v=pHsuIaPbNbY

▸ Stan Hands-on with Bob Carpenter https://www.youtube.com/watch?
v=6NXRCtWQNMg

▸ A lot more available on mc-stan.org

http://www.stat.columbia.edu/~gelman/research/published/stan_jebs_2.pdf
http://www.stat.columbia.edu/~gelman/research/published/stan-paper-revision-feb2015.pdf
https://www.youtube.com/watch?v=pHsuIaPbNbY
https://www.youtube.com/watch?v=6NXRCtWQNMg
http://mc-stan.org

Merci Beaucoup!

▸eric@stan.fit

▸@ericnovik

▸mc-stan.org / stan.fit

▸www.linkedin.com/in/enovik

http://www.linkedin.com/in/enovik

